Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Acta Paediatr ; 112(11): 2266-2268, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37421229
2.
Ann Clin Transl Neurol ; 10(5): 787-801, 2023 05.
Article in English | MEDLINE | ID: mdl-37000947

ABSTRACT

OBJECTIVE: The goal of this study is to demonstrate the utility of a growth assay to quantify the functional impact of single nucleotide variants (SNVs) in SLC2A1, the gene responsible for Glut1DS. METHODS: The functional impact of 40 SNVs in SLC2A1 was quantitatively determined in HAP1 cells in which SLC2A1 is required for growth. Donor libraries were introduced into the endogenous SLC2A1 gene in HAP1-Lig4KO cells using CRISPR/Cas9. Cell populations were harvested and sequenced to quantify the effect of variants on growth and generate a functional score. Quantitative functional scores were compared to 3-OMG uptake, SLC2A1 cell surface expression, CADD score, and clinical data, including CSF/blood glucose ratio. RESULTS: Nonsense variants (N = 3) were reduced in cell culture over time resulting in negative scores (mean score: -1.15 ± 0.17), whereas synonymous variants (N = 10) were not depleted (mean score: 0.25 ± 0.12) (P < 2e-16). Missense variants (N = 27) yielded a range of functional scores including slightly negative scores, supporting a partial function and intermediate phenotype. Several variants with normal results on either cell surface expression (p.N34S and p.W65R) or 3-OMG uptake (p.W65R) had negative functional scores. There is a moderate but significant correlation between our functional scores and CADD scores. INTERPRETATION: Cell growth is useful to quantitatively determine the functional effects of SLC2A1 variants. Nonsense variants were reliably distinguished from benign variants in this in vitro functional assay. For facilitating early diagnosis and therapeutic intervention, future work is needed to determine the functional effect of every possible variant in SLC2A1.


Subject(s)
Carbohydrate Metabolism, Inborn Errors , Humans , Phenotype , Carbohydrate Metabolism, Inborn Errors/genetics , Carbohydrate Metabolism, Inborn Errors/diagnosis , Monosaccharide Transport Proteins/genetics , Mutation, Missense , Glucose Transporter Type 1/genetics
3.
Biomolecules ; 12(12)2022 11 23.
Article in English | MEDLINE | ID: mdl-36551162

ABSTRACT

Glucose transporter 1 (GLUT1) is believed to solely mediate basal (insulin-independent) glucose uptake in skeletal muscle; yet recent work has demonstrated that mechanical overload, a model of resistance exercise training, increases muscle GLUT1 levels. The primary objective of this study was to determine if GLUT1 is necessary for basal or overload-stimulated muscle glucose uptake. Muscle-specific GLUT1 knockout (mGLUT1KO) mice were generated and examined for changes in body weight, body composition, metabolism, systemic glucose regulation, muscle glucose transporters, and muscle [3H]-2-deoxyglucose uptake ± the GLUT1 inhibitor BAY-876. [3H]-hexose uptake ± BAY-876 was also examined in HEK293 cells-expressing GLUT1-6 or GLUT10. mGLUT1KO mice exhibited no impairments in body weight, lean mass, whole body metabolism, glucose tolerance, basal or overload-stimulated muscle glucose uptake. There was no compensation by the insulin-responsive GLUT4. In mGLUT1KO mouse muscles, overload stimulated higher expression of mechanosensitive GLUT6, but not GLUT3 or GLUT10. In control and mGLUT1KO mouse muscles, 0.05 µM BAY-876 impaired overload-stimulated, but not basal glucose uptake. In the GLUT-HEK293 cells, BAY-876 inhibited glucose uptake via GLUT1, GLUT3, GLUT4, GLUT6, and GLUT10. Collectively, these findings demonstrate that GLUT1 does not mediate basal muscle glucose uptake and suggest that a novel glucose transport mechanism mediates overload-stimulated glucose uptake.


Subject(s)
Glucose Transporter Type 1 , Glucose , Muscle, Skeletal , Animals , Humans , Mice , Body Weight , Glucose/metabolism , Glucose Transporter Type 1/genetics , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , HEK293 Cells , Insulin/metabolism , Muscle, Skeletal/metabolism , Mice, Knockout
5.
Linacre Q ; 87(1): 34-42, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32431446

ABSTRACT

Individuals who experience a gender identity that is discordant with biological sex are increasingly presenting to physicians for assistance in alleviating associated psychological distress. In contrast to prior efforts to identify and primarily address underlying psychiatric contributors to gender dysphoria, interventions that include uncritical social affirmation, use of gonadotropin-releasing hormone agonists to suppress normally timed puberty, and administration of cross-sex steroid hormones to induce desired secondary sex characteristics are now advocated by an emerging cohort of transgender medicine specialists. For patients with persistent gender dysphoria, surgery is offered to alter the appearance of breasts and genital organs. Efforts to address ethical concerns regarding this contentious treatment paradigm are dependent upon reliable evidence on immediate and long-term risks and benefits. Although strong recommendations have been made for invasive and potentially irreversible interventions, high-quality scientific data on the effects of this approach are generally lacking. Limitations of the existing transgender literature include general lack of randomized prospective trial design, small sample size, recruitment bias, short study duration, high subject dropout rates, and reliance on "expert" opinion. Existing data reveal significant intervention-associated morbidity and raise serious concern that the primary goal of suicide prevention is not achieved. In addition to substantial moral questions, adherence to established principles of evidence-based medicine necessitates a high degree of caution in accepting gender-affirming medical interventions as a preferred treatment approach. Continued consideration and rigorous investigation of alternate approaches to alleviating suffering in people with gender dysphoria are warranted. SUMMARY: This paper provides an overview of what is currently known about people who experience a gender identity that differs from their biological sex and the associated desire to engage the medical profession in alleviating associated discomfort and distress. The scientific evidence used to support current recommendations for affirming one's preferred gender, halting normally timed puberty, administering cross-sex hormones, and surgically altering primary and secondary sexual traits are summarized and critically evaluated. Serious deficits in understanding the cause of this condition, the reasons for the marked increase in people presenting for medical care, together with immediate and long-term risks relative to benefit of medical intervention are exposed.

6.
Gastroenterology ; 158(5): 1402-1416.e2, 2020 04.
Article in English | MEDLINE | ID: mdl-31838076

ABSTRACT

BACKGROUND & AIMS: Trehalose is a disaccharide that might be used in the treatment of cardiometabolic diseases. However, trehalose consumption promotes the expansion of Clostridioides difficile ribotypes that metabolize trehalose via trehalose-6-phosphate hydrolase. Furthermore, brush border and renal trehalases can reduce the efficacy of trehalose by cleaving it into monosaccharides. We investigated whether a trehalase-resistant analogue of trehalose (lactotrehalose) has the same metabolic effects of trehalose without expanding C difficile. METHODS: We performed studies with HEK293 and Caco2 cells, primary hepatocytes from mice, and human intestinal organoids. Glucose transporters were overexpressed in HEK293 cells, and glucose tra2nsport was quantified. Primary hepatocytes were cultured with or without trehalose or lactotrehalose, and gene expression patterns were analyzed. C57B6/J mice were given oral antibiotics and trehalose or lactotrehalose in drinking water, or only water (control), followed by gavage with the virulent C difficile ribotype 027 (CD027); fecal samples were analyzed for toxins A (ToxA) or B (ToxB) by enzyme-linked immunosorbent assay. Other mice were given trehalose or lactotrehalose in drinking water for 2 days before placement on a chow or 60% fructose diet for 10 days. Liver tissues were collected and analyzed by histologic, serum biochemical, RNA sequencing, autophagic flux, and thermogenesis analyses. We quantified portal trehalose and lactotrehalose bioavailability by gas chromatography mass spectrometry. Fecal microbiomes were analyzed by 16S ribosomal RNA sequencing and principal component analyses. RESULTS: Lactotrehalose and trehalose each blocked glucose transport in HEK293 cells and induced a gene expression pattern associated with fasting in primary hepatocytes. Compared with mice on the chow diet, mice on the high-fructose diet had increased circulating cholesterol, higher ratios of liver weight-to-body weight, hepatic lipid accumulation (steatosis), and liver gene expression patterns of carbohydrate-responsive de novo lipogenesis. Mice given lactotrehalose while on the high-fructose diet did not develop any of these features and had increased whole-body caloric expenditure compared with mice given trehalose or water and fed a high-fructose diet. Livers from mice given lactotrehalose had increased transcription of genes that regulate mitochondrial energy metabolism compared with liver from mice given trehalose or controls. Lactotrehalose was bioavailable in venous and portal circulation and fecal samples. Lactotrehalose reduced fecal markers of microbial branched-chain amino acid biosynthesis and increased expression of microbial genes that regulate insulin signaling. In mice given antibiotics followed by CD027, neither lactotrehalose nor trehalose increased levels of the bacteria or its toxin in stool-in fact, trehalose reduced the abundance of CD027 in stool. Lactotrehalose and trehalose reduced markers of inflammation in rectal tissue after CD027 infection. CONCLUSIONS: Lactotrehalose is a trehalase-resistant analogue that increases metabolic parameters, compared with trehalose, without increasing the abundance or virulence of C difficile strain CD027. Trehalase-resistant trehalose analogues might be developed as next-generation fasting-mimetics for the treatment of diabetes and nonalcoholic fatty liver disease.


Subject(s)
Clostridioides difficile/isolation & purification , Clostridium Infections/prevention & control , Energy Metabolism/drug effects , Trehalose/pharmacology , Animals , Bacterial Proteins/metabolism , Caco-2 Cells , Clostridioides difficile/enzymology , Clostridium Infections/diagnosis , Clostridium Infections/microbiology , Diabetes Mellitus/drug therapy , Diabetes Mellitus/metabolism , Disaccharidases/metabolism , Disease Models, Animal , Fasting/metabolism , Feces/microbiology , Glucose/metabolism , HEK293 Cells , Hepatocytes , Humans , Intestinal Mucosa/cytology , Lipogenesis/drug effects , Liver/drug effects , Liver/metabolism , Male , Mice , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Primary Cell Culture , Trehalose/analogs & derivatives , Trehalose/therapeutic use
7.
PLoS One ; 14(5): e0216457, 2019.
Article in English | MEDLINE | ID: mdl-31071153

ABSTRACT

Although the Plasmodium falciparum hexose transporter PfHT has emerged as a promising target for anti-malarial therapy, previously identified small-molecule inhibitors have lacked promising drug-like structural features necessary for development as clinical therapeutics. Taking advantage of emerging insight into structure/function relationships in homologous facilitative hexose transporters and our novel high throughput screening platform, we investigated the ability of compounds satisfying Lipinksi rules for drug likeness to directly interact and inhibit PfHT. The Maybridge HitFinder chemical library was interrogated by searching for compounds that reduce intracellular glucose by >40% at 10 µM. Testing of initial hits via measurement of 2-deoxyglucose (2-DG) uptake in PfHT over-expressing cell lines identified 6 structurally unique glucose transport inhibitors. WU-1 (3-(2,6-dichlorophenyl)-5-methyl-N-[2-(4-methylbenzenesulfonyl)ethyl]-1,2-oxazole-4-carboxamide) blocked 2-DG uptake (IC50 = 5.8 ± 0.6 µM) with minimal effect on the human orthologue class I (GLUTs 1-4), class II (GLUT8) and class III (GLUT5) facilitative glucose transporters. WU-1 showed comparable potency in blocking 2-DG uptake in freed parasites and inhibiting parasite growth, with an IC50 of 6.1 ± 0.8 µM and EC50 of 5.5 ± 0.6 µM, respectively. WU-1 also directly competed for N-[2-[2-[2-[(N-biotinylcaproylamino)ethoxy)ethoxyl]-4-[2-(trifluoromethyl)-3H-diazirin-3-yl]benzoyl]-1,3-bis(mannopyranosyl-4-yloxy)-2-propylamine (ATB-BMPA) binding and inhibited the transport of D-glucose with an IC50 of 5.9 ± 0.8 µM in liposomes containing purified PfHT. Kinetic analysis revealed that WU-1 acts as a non-competitive inhibitor of zero-trans D-fructose uptake. Decreased potency for WU-1 and the known endofacial ligand cytochalasin B was observed when PfHT was engineered to contain an N-terminal FLAG tag. This modification resulted in a concomitant increase in affinity for 4,6-O-ethylidene-α-D-glucose, an exofacially directed transport antagonist, but did not alter the Km for 2-DG. Taken together, these data are consistent with a model in which WU-1 binds preferentially to the transporter in an inward open conformation and support the feasibility of developing potent and selective PfHT antagonists as a novel class of anti-malarial drugs.


Subject(s)
Antimalarials , Monosaccharide Transport Proteins , Plasmodium falciparum/metabolism , Protozoan Proteins , Antimalarials/chemistry , Antimalarials/pharmacology , Biological Transport, Active/drug effects , Glucose/metabolism , HEK293 Cells , Humans , Ligands , Monosaccharide Transport Proteins/antagonists & inhibitors , Monosaccharide Transport Proteins/chemistry , Monosaccharide Transport Proteins/metabolism , Protein Engineering , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Small Molecule Libraries
9.
Am J Physiol Endocrinol Metab ; 315(6): E1121-E1132, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30226997

ABSTRACT

Gain-of-function (GOF) mutations in the ATP-sensitive potassium (KATP) channels cause neonatal diabetes. Despite the well-established genetic root of the disease, pathways modulating disease severity and treatment effectiveness remain poorly understood. Patient phenotypes can vary from severe diabetes to remission, even in individuals with the same mutation and within the same family, suggesting that subtle modifiers can influence disease outcome. We have tested the underlying mechanism of transient vs. permanent neonatal diabetes in KATP-GOF mice treated for 14 days with glibenclamide. Some KATP-GOF mice show remission of diabetes and enhanced insulin sensitivity long after diabetes treatment has ended, while others maintain severe insulin-resistance. However, insulin sensitivity is not different between the two groups before or during diabetes induction, suggesting that improved sensitivity is a consequence, rather than the cause of, remission, implicating other factors modulating glucose early in diabetes progression. Leptin, glucagon, insulin, and glucagon-like peptide-1 are not different between remitters and nonremitters. However, liver glucose production is significantly reduced before transgene induction in remitter, relative to nonremitter and nontreated, mice. Surprisingly, while subsequent remitter animals exhibited normal serum cytokines, nonremitter mice showed increased cytokines, which paralleled the divergence in blood glucose. Together, these results suggest that systemic inflammation may play a role in the remitting versus non-remitting outcome. Supporting this conclusion, treatment with the anti-inflammatory meloxicam significantly increased the fraction of remitting animals. Beyond neonatal diabetes, the potential for inflammation and glucose production to exacerbate other forms of diabetes from a compensated state to a glucotoxic state should be considered.


Subject(s)
Diabetes Mellitus/metabolism , Glyburide/therapeutic use , Inflammation/metabolism , Insulin Resistance/physiology , Animals , Blood Glucose/metabolism , Cytokines/blood , Diabetes Mellitus/drug therapy , Diabetes Mellitus/genetics , Glucagon/blood , Glucagon-Like Peptide 1/blood , Insulin/blood , Leptin/blood , Mice , Mice, Transgenic , Mutation , Potassium Channels, Inwardly Rectifying/genetics , Potassium Channels, Inwardly Rectifying/metabolism
10.
Autophagy ; 14(11): 1959-1975, 2018.
Article in English | MEDLINE | ID: mdl-29996716

ABSTRACT

The macroautophagy/autophagy-inducing disaccharide, trehalose, has been proposed to be a promising therapeutic agent against neurodegenerative and cardiometabolic diseases. We recently showed that trehalose attenuates hepatic steatosis in part by blocking hepatocyte glucose transport to induce hepatocyte autophagic flux. However, although every major demonstration of trehalose action invokes activating autophagic flux as its primary function, the mechanism of action of trehalose in whole-body energy metabolism remains poorly defined. Here, we demonstrate that trehalose induces hepatocyte TFEB (transcription factor EB)-dependent thermogenesis in vivo, concomitant with upregulation of hepatic and white adipose expression of UCP1 (uncoupling protein 1 [mitochondrial, protein carrier]). Mechanistically, we provide evidence that hepatocyte fasting transcriptional and metabolic responses depend upon PPARGC1A (peroxisome proliferative activated receptor, gamma, coactivator 1 alpha), TFEB, and FGF21 (fibroblast growth factor 21) signaling. Strikingly, hepatocyte-selective TFEB knockdown abrogated trehalose induction of thermogenesis and white adipose tissue UCP1 upregulation in vivo. In contrast, we found that trehalose action on thermogenesis was independent of LEP (leptin) and the autophagy pathway, as there was robust thermogenic induction in trehalose-treated ob/ob, Becn1, Atg16l1, and Epg5 mutant mice. We conclude that trehalose induces metabolically favorable effects on whole-body thermogenesis in part via hepatocyte-centered fasting-like mechanisms that appear to be independent of autophagic flux. Our findings elucidate a novel mechanism by which trehalose acts as a metabolic therapeutic agent by activating hepatic fasting responses. More broadly, the hepatic glucose fasting response may be of clinical utility against overnutrition-driven disease, such as obesity and type 2 diabetes mellitus.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/physiology , Hepatocytes/drug effects , Thermogenesis/drug effects , Thermogenesis/genetics , Trehalose/pharmacology , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Cells, Cultured , Energy Metabolism/drug effects , Energy Metabolism/genetics , Glucose Transport Proteins, Facilitative/antagonists & inhibitors , Glucose Transport Proteins, Facilitative/metabolism , Hepatocytes/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Up-Regulation/drug effects , Up-Regulation/genetics
11.
Sci Rep ; 8(1): 6475, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29691457

ABSTRACT

GLUT transgenic and knockout mice have provided valuable insight into the role of facilitative glucose transporters (GLUTs) in cardiovascular and metabolic disease, but compensatory physiological changes can hinder interpretation of these models. To determine whether adaptations occur in response to GLUT inhibition in the failing adult heart, we chronically treated TG9 mice, a transgenic model of dilated cardiomyopathy and heart failure, with the GLUT inhibitor ritonavir. Glucose tolerance was significantly improved with chronic treatment and correlated with decreased adipose tissue retinol binding protein 4 (RBP4) and resistin. A modest improvement in lifespan was associated with decreased cardiomyocyte brain natriuretic peptide (BNP) expression, a marker of heart failure severity. GLUT1 and -12 protein expression was significantly increased in left ventricular (LV) myocardium in ritonavir-treated animals. Supporting a switch from fatty acid to glucose utilization in these tissues, fatty acid transporter CD36 and fatty acid transcriptional regulator peroxisome proliferator-activated receptor α (PPARα) mRNA were also decreased in LV and soleus muscle. Chronic ritonavir also increased cardiac output and dV/dt-d in C57Bl/6 mice following ischemia-reperfusion injury. Taken together, these data demonstrate compensatory metabolic adaptation in response to chronic GLUT blockade as a means to evade deleterious changes in the failing heart.


Subject(s)
Cardiomyopathy, Dilated/metabolism , Glucose Transport Proteins, Facilitative/metabolism , Glucose/metabolism , Animals , Blood Glucose/metabolism , Coronary Artery Disease/metabolism , Disease Models, Animal , Fatty Acid Transport Proteins/metabolism , Fatty Acids/metabolism , Glucose Transport Proteins, Facilitative/physiology , Heart Failure/metabolism , Heart Ventricles/physiopathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Myocardial Ischemia/metabolism , Myocardial Ischemia/physiopathology , Myocardium/metabolism , Myocytes, Cardiac/metabolism , PPAR alpha/metabolism , Ritonavir/pharmacology
12.
Methods Mol Biol ; 1713: 69-75, 2018.
Article in English | MEDLINE | ID: mdl-29218518

ABSTRACT

Glucose is metabolized through anaerobic glycolysis and aerobic oxidative phosphorylation (OXPHOS). Perturbing glucose uptake and its subsequent metabolism can alter both glycolytic and OXPHOS pathways and consequently lactate and/or oxygen consumption. Production and secretion of lactate, as a consequence of glycolysis, leads to acidification of the extracellular medium. Molecular oxygen is the final electron acceptor in the electron transport chain, facilitating oxidative phosphorylation of ADP to ATP. The alterations in extracellular acidification and/or oxygen consumption can thus be used as indirect readouts of glucose metabolism and assessing the impact of inhibiting glucose transport through specific glucose transporters (GLUTs). The Seahorse bioenergetics analyzer can measure both the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). The proposed methodology affords a robust, high-throughput method to screen for GLUT inhibition in cells engineered to express specific GLUTs, providing live cell read-outs upon GLUT inhibition.


Subject(s)
Drug Discovery , Glucose Transport Proteins, Facilitative/antagonists & inhibitors , Glucose Transport Proteins, Facilitative/metabolism , Smegmamorpha/metabolism , Animals , Biological Transport , Cell Culture Techniques , Cell Line , Data Interpretation, Statistical , Drug Discovery/methods , Gene Knockdown Techniques , Glucose Transport Proteins, Facilitative/genetics , Glycolysis/drug effects , Humans , Oxidative Phosphorylation/drug effects , Software
13.
Eur J Med Chem ; 139: 573-586, 2017 Oct 20.
Article in English | MEDLINE | ID: mdl-28837922

ABSTRACT

Cancer cells consume more glucose to fuel metabolic programs fundamental to sustaining their survival, growth and proliferation. Among the fourteen SLC2A family members, GLUTs 1 and 4 are high-affinity glucose transporters. GLUT4 (SLC2A4) is highly expressed in muscle and adipose tissue. Basally retained within the cell, GLUT4 traffics to the plasma membrane (PM) in response to insulin and exercise-stimulation. The plasma cell malignancy multiple myeloma (MM) exhibits increased constitutive expression of GLUT4 on the PM, co-opting use of GLUT4 for survival and proliferation. GLUT4 inhibition by knockdown or treatment with the FDA-approved HIV protease inhibitor ritonavir leads to cytostatic and/or cytotoxic and chemosensitizing effects in tumor cells both in vitro and in vivo. We recently reported our generation of GLUT4 homology models and virtual high-throughput screening (vHTS) to identify multiple series of novel GLUT4 antagonists. In this report, we describe our initial hit-to-lead optimization to synthesize new analogs with improved potency and selectivity for GLUT4, and the biological characterization of these compounds in a variety of assays. We show that our lead compound (compound 20) decreases glucose uptake and cell proliferation as well as inhibits the expression of pro-survival MCL-1 in MM similar to the effect observed via knockdown of GLUT4 expression. Compound 20 is also effective at chemosensitizing multiple myeloma cell lines and patient samples to venetoclax, dexamethasone and melphalan. In sum, we report development of selective GLUT4 inhibitors lacking inhibitory activity against GLUT1 and GLUT8. We show that selective pharmacological inhibition of GLUT4 is feasible and this may represent a novel strategy for the treatment and chemosensitization of multiple myeloma to standard therapeutics.


Subject(s)
Antineoplastic Agents/pharmacology , Glucose Transporter Type 4/antagonists & inhibitors , Multiple Myeloma/drug therapy , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Death/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Glucose Transporter Type 4/metabolism , HEK293 Cells , Humans , Mice , Molecular Structure , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Structure-Activity Relationship , Tumor Cells, Cultured
14.
Sci Rep ; 7(1): 8400, 2017 08 21.
Article in English | MEDLINE | ID: mdl-28827774

ABSTRACT

The emergence of Plasmodium falciparum resistant to frontline therapeutics has prompted efforts to identify and validate agents with novel mechanisms of action. MEPicides represent a new class of antimalarials that inhibit enzymes of the methylerythritol phosphate (MEP) pathway of isoprenoid biosynthesis, including the clinically validated target, deoxyxylulose phosphate reductoisomerase (Dxr). Here we describe RCB-185, a lipophilic prodrug with nanomolar activity against asexual parasites. Growth of P. falciparum treated with RCB-185 was rescued by isoprenoid precursor supplementation, and treatment substantially reduced metabolite levels downstream of the Dxr enzyme. In addition, parasites that produced higher levels of the Dxr substrate were resistant to RCB-185. Notably, environmental isolates resistant to current therapies remained sensitive to RCB-185, the compound effectively treated sexually-committed parasites, and was both safe and efficacious in malaria-infected mice. Collectively, our data demonstrate that RCB-185 potently and selectively inhibits Dxr in P. falciparum, and represents a promising lead compound for further drug development.


Subject(s)
Antimalarials/pharmacology , Enzyme Inhibitors/pharmacology , Plasmodium falciparum/drug effects , Prodrugs/pharmacology , Terpenes/antagonists & inhibitors , Aldose-Ketose Isomerases/antagonists & inhibitors , Animals , Antimalarials/administration & dosage , Disease Models, Animal , Enzyme Inhibitors/administration & dosage , Malaria, Falciparum/drug therapy , Mice , Plasmodium falciparum/growth & development , Prodrugs/administration & dosage , Treatment Outcome
15.
Sci Rep ; 6: 38586, 2016 12 06.
Article in English | MEDLINE | ID: mdl-27922102

ABSTRACT

Trehalose is a disaccharide demonstrated to mitigate disease burden in multiple murine neurodegenerative models. We recently revealed that trehalose rapidly induces hepatic autophagy and abrogates hepatic steatosis by inhibiting hexose transport via the SLC2A family of facilitative transporters. Prior studies, however, postulate that intracellular trehalose is sufficient to induce cellular autophagy. The objective of the current study was to identify the means by which trehalose accesses the hepatocyte cytoplasm, and define the distal signaling mechanisms by which trehalose induces autophagy. We provide gas chromatographic/mass spectrometric, fluorescence microscopic and radiolabeled uptake evidence that trehalose traverses the plasma membrane via SLC2A8 (GLUT8), a homolog of the trehalose transporter-1 (Tret1). Moreover, GLUT8-deficient hepatocytes and GLUT8-deficient mice exposed to trehalose resisted trehalose-induced AMP-activated protein kinase (AMPK) phosphorylation and autophagic induction in vitro and in vivo. Although trehalose profoundly attenuated mTORC1 signaling, trehalose-induced mTORC1 suppression was insufficient to activate autophagy in the absence of AMPK or GLUT8. Strikingly, transient, heterologous Tret1 overexpression reconstituted autophagic flux and AMPK signaling defects in GLUT8-deficient hepatocyte cultures. Together, these data suggest that cytoplasmic trehalose access is carrier-mediated, and that GLUT8 is a mammalian trehalose transporter required for hepatocyte trehalose-induced autophagy and signal transduction.


Subject(s)
Autophagy , Glucose Transport Proteins, Facilitative/metabolism , Trehalose/metabolism , AMP-Activated Protein Kinases/metabolism , Amino Acid Sequence , Animals , Autophagy/drug effects , Biological Transport , Cell Line , Fatty Acids/metabolism , Glucose/metabolism , Glucose Transport Proteins, Facilitative/chemistry , Glucose Transport Proteins, Facilitative/genetics , Hepatocytes/metabolism , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Knockout , Models, Biological , Models, Molecular , Molecular Conformation , Phosphorylation , Protein Binding , Signal Transduction , Trehalose/chemistry , Trehalose/pharmacology , Triglycerides/metabolism
16.
Antimicrob Agents Chemother ; 60(12): 7407-7414, 2016 12.
Article in English | MEDLINE | ID: mdl-27736766

ABSTRACT

The glucose transporter PfHT is essential to the survival of the malaria parasite Plasmodium falciparum and has been shown to be a druggable target with high potential for pharmacological intervention. Identification of compounds against novel drug targets is crucial to combating resistance against current therapeutics. Here, we describe the development of a cell-based assay system readily adaptable to high-throughput screening that directly measures compound effects on PfHT-mediated glucose transport. Intracellular glucose concentrations are detected using a genetically encoded fluorescence resonance energy transfer (FRET)-based glucose sensor. This allows assessment of the ability of small molecules to inhibit glucose uptake with high accuracy (Z' factor of >0.8), thereby eliminating the need for radiolabeled substrates. Furthermore, we have adapted this assay to counterscreen PfHT hits against the human orthologues GLUT1, -2, -3, and -4. We report the identification of several hits after screening the Medicines for Malaria Venture (MMV) Malaria Box, a library of 400 compounds known to inhibit erythrocytic development of P. falciparum Hit compounds were characterized by determining the half-maximal inhibitory concentration (IC50) for the uptake of radiolabeled glucose into isolated P. falciparum parasites. One of our hits, compound MMV009085, shows high potency and orthologue selectivity, thereby successfully validating our assay for antimalarial screening.


Subject(s)
Antimalarials/pharmacology , Fluorescence Resonance Energy Transfer/methods , Glucose/antagonists & inhibitors , High-Throughput Screening Assays , Monosaccharide Transport Proteins/antagonists & inhibitors , Plasmodium falciparum/drug effects , Protozoan Proteins/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Antimalarials/chemistry , Cells, Cultured , Erythrocytes/drug effects , Erythrocytes/metabolism , Erythrocytes/parasitology , Gene Expression , Glucose/metabolism , Glucose Transporter Type 1/genetics , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 2/genetics , Glucose Transporter Type 2/metabolism , Glucose Transporter Type 3/genetics , Glucose Transporter Type 3/metabolism , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , HEK293 Cells , Humans , Monosaccharide Transport Proteins/genetics , Monosaccharide Transport Proteins/metabolism , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Small Molecule Libraries/chemistry , Species Specificity , Structure-Activity Relationship , Tritium
17.
J Biol Chem ; 291(33): 17271-82, 2016 08 12.
Article in English | MEDLINE | ID: mdl-27302065

ABSTRACT

The regulated movement of glucose across mammalian cell membranes is mediated by facilitative glucose transporters (GLUTs) embedded in lipid bilayers. Despite the known importance of phospholipids in regulating protein structure and activity, the lipid-induced effects on the GLUTs remain poorly understood. We systematically examined the effects of physiologically relevant phospholipids on glucose transport in liposomes containing purified GLUT4 and GLUT3. The anionic phospholipids, phosphatidic acid, phosphatidylserine, phosphatidylglycerol, and phosphatidylinositol, were found to be essential for transporter function by activating it and stabilizing its structure. Conical lipids, phosphatidylethanolamine and diacylglycerol, enhanced transporter activity up to 3-fold in the presence of anionic phospholipids but did not stabilize protein structure. Kinetic analyses revealed that both lipids increase the kcat of transport without changing the Km values. These results allowed us to elucidate the activation of GLUT by plasma membrane phospholipids and to extend the field of membrane protein-lipid interactions to the family of structurally and functionally related human solute carriers.


Subject(s)
Glucose Transporter Type 3 , Glucose Transporter Type 4 , Phospholipids , Biological Transport, Active/physiology , Glucose Transporter Type 3/chemistry , Glucose Transporter Type 3/metabolism , Glucose Transporter Type 4/chemistry , Glucose Transporter Type 4/metabolism , HEK293 Cells , Humans , Liposomes/chemistry , Phospholipids/chemistry , Phospholipids/metabolism
18.
Sci Signal ; 9(416): ra21, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26905426

ABSTRACT

Trehalose is a naturally occurring disaccharide that has gained attention for its ability to induce cellular autophagy and mitigate diseases related to pathological protein aggregation. Despite decades of ubiquitous use as a nutraceutical, preservative, and humectant, its mechanism of action remains elusive. We showed that trehalose inhibited members of the SLC2A (also known as GLUT) family of glucose transporters. Trehalose-mediated inhibition of glucose transport induced AMPK (adenosine 5'-monophosphate-activated protein kinase)-dependent autophagy and regression of hepatic steatosis in vivo and a reduction in the accumulation of lipid droplets in primary murine hepatocyte cultures. Our data indicated that trehalose triggers beneficial cellular autophagy by inhibiting glucose transport.


Subject(s)
Autophagy , Fatty Liver/metabolism , Glucose Transport Proteins, Facilitative/metabolism , Trehalose/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Animals , Fatty Liver/genetics , Fatty Liver/pathology , Glucose Transport Proteins, Facilitative/genetics , HEK293 Cells , Hep G2 Cells , Humans , Mice , Mice, Knockout
19.
Clin Chem ; 61(12): 1444, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26614228
20.
Protein Sci ; 24(12): 2008-19, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26402434

ABSTRACT

The insulin-responsive facilitative glucose transporter GLUT4 is of fundamental importance for maintenance of glucose homeostasis. Despite intensive effort, the ability to express and purify sufficient quantities of structurally and functionally intact protein for biophysical analysis has previously been exceedingly difficult. We report here the development of novel methods to express, purify, and functionally reconstitute GLUT4 into detergent micelles and proteoliposomes. Rat GLUT4 containing FLAG and His tags at the amino and carboxy termini, respectively, was engineered and stably transfected into HEK-293 cells. Overexpression in suspension culture yielded over 1.5 mg of protein per liter of culture. Systematic screening of detergent solubilized GLUT4-GFP fusion protein via fluorescent-detection size exclusion chromatography identified lauryl maltose neopentyl glycol (LMNG) as highly effective for isolating monomeric GLUT4 micelles. Preservation of structural integrity and ligand binding was demonstrated via quenching of tryptophan fluorescence and competition of ATB-BMPA photolabeling by cytochalasin B. GLUT4 was reconstituted into lipid nanodiscs and proper folding was confirmed. Reconstitution of purified GLUT4 with amphipol A8-35 stabilized the transporter at elevated temperatures for extended periods of time. Functional activity of purified GLUT4 was confirmed by reconstitution of LMNG-purified GLUT4 into proteoliposomes and measurement of saturable uptake of D-glucose over L-glucose. Taken together, these data validate the development of an efficient means to generate milligram quantities of stable and functionally intact GLUT4 that is suitable for a wide array of biochemical and biophysical analyses.


Subject(s)
Chromatography, Gel/methods , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/isolation & purification , Glucose/metabolism , Proteolipids/metabolism , Animals , Cloning, Molecular , Glucose Transporter Type 4/chemistry , Glucose Transporter Type 4/metabolism , HEK293 Cells , Humans , Micelles , Models, Molecular , Polymers/chemistry , Propylamines/chemistry , Protein Binding , Rats , Sf9 Cells , Spodoptera , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL