ABSTRACT
OBJECTIVE: To evaluate the initial cutoff values, rates of screen positives, and genotypes for the large-scale newborn screening program for multiple mucopolysaccharidoses (MPS) in Taiwan. STUDY DESIGN: More than 100 000 dried blood spots were collected consecutively as part of the national Taiwan newborn screening programs. Enzyme activities were measured by tandem mass spectrometry from dried blood spot punches. Genotypes were obtained when a second newborn screening specimen again had a decreased enzyme activity. Additional clinical evaluation was then initiated based on enzyme activity and/or genotype. RESULTS: Molecular genetic analysis for cases with low enzyme activity revealed 5 newborns with pathogenic alpha-L-iduronidase mutations, 3 newborns with pathogenic iduronate-2-sulfatase mutations, and 1 newborn was a carrier of an arylsulfatase B mutation. Several variants of unknown pathogenic significance were also identified, most likely causing pseudodeficiency. CONCLUSIONS: The highly robust tandem mass spectrometry-based enzyme assays for MPS-I, MPS-II, and MPS-VI allow for high-throughput newborn screening for these lysosomal storage disorders. Optimized cutoff values combined with second tier testing could largely eliminate false-positive results. Accordingly, newborn screening for these lysosomal storage disorders is possible.