Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 14(11)2022 10 31.
Article in English | MEDLINE | ID: mdl-36366512

ABSTRACT

This study aimed to analyze the genetic and evolutionary characteristics of the influenza A/H3N2 viruses circulating in Myanmar from 2015 to 2019. Whole genomes from 79 virus isolates were amplified using real-time polymerase chain reaction and successfully sequenced using the Illumina iSeq100 platforms. Eight individual phylogenetic trees were retrieved for each segment along with those of the World Health Organization (WHO)-recommended Southern Hemisphere vaccine strains for the respective years. Based on the WHO clades classification, the A/H3N2 strains in Myanmar from 2015 to 2019 collectively belonged to clade 3c.2. These strains were further defined based on hemagglutinin substitutions as follows: clade 3C.2a (n = 39), 3C.2a1 (n = 2), and 3C.2a1b (n = 38). Genetic analysis revealed that the Myanmar strains differed from the Southern Hemisphere vaccine strains each year, indicating that the vaccine strains did not match the circulating strains. The highest rates of nucleotide substitution were estimated for hemagglutinin (3.37 × 10-3 substitutions/site/year) and neuraminidase (2.89 × 10-3 substitutions/site/year). The lowest rate was for non-structural protein segments (4.19 × 10-5 substitutions/site/year). The substantial genetic diversity that was revealed improved phylogenetic classification. This information will be particularly relevant for improving vaccine strain selection.


Subject(s)
Influenza A virus , Influenza Vaccines , Influenza, Human , Humans , Influenza, Human/prevention & control , Influenza A Virus, H3N2 Subtype/genetics , Influenza A virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinins , Phylogeny , Myanmar/epidemiology , Sequence Analysis, DNA , Seasons
2.
Infect Genet Evol ; 93: 104927, 2021 09.
Article in English | MEDLINE | ID: mdl-34020068

ABSTRACT

We studied genetic variation in the second hypervariable region (HVR) of the G gene of human respiratory syncytial virus (HRSV) from 1701 nasal swab samples collected from outpatients with acute respiratory infections at two general hospitals in the cities Yangon and Pyinmana in Myanmar from 2015 to 2018. HRSV genotypes were characterized using phylogenetic trees constructed using the maximum likelihood method. Time-scale phylogenetic tree analyses were performed using the Bayesian Markov chain Monte Carlo method. In total, 244 (14.3%) samples were HRSV-positive and were classified as HRSV-A (n = 84, 34.4%), HRSV-B (n = 158, 64.8%), and co-detection of HRSV-A/HRSV-B (n = 2, 0.8%). HRSV epidemics occurred seasonally between July (1.9%, 15/785) and August (10.5%, 108/1028), with peak infections in September (35.8%, 149/416) and October (58.2%, 89/153). HRSV infection rate was higher in children ≥1 year of age than in those <1 year of age (70.5% vs. 29.5%). The most common HRSV symptoms in children were cough (80%-90%) and rhinorrhea (70%-100%). The predominant genotypes were ON1for HRSV-A (78%) and BA9 for HRSV-B (64%). Time to the most recent common ancestor was 2014 (95% highest posterior density [HPD], 2012-2015) for HRSV-A ON1 and 2009 (95% HPD, 2004-2012) for HRSV-B BA9. The mean evolutionary rate (substitutions/site/year) for HRSV-B (2.12 × 10-2, 95% HPD, 8.53 × 10-3-3.63 × 10-2) was slightly higher than that for HRSV-A (1.39 × 10-2, 95% HPD, 6.03 × 10-3-2.12 × 10-2). The estimated effective population size (diversity) for HRSV-A increased from 2015 to 2016 and declined in mid-2018, whereas HRSV-B diversity was constant in 2015 and 2016 and increased in mid-2017. In conclusion, the dominant HRSV-A and HRSV-B genotypes in Myanmar were ON1 and BA9, respectively, between 2015 and 2018. HRSV-B evolved slightly faster than HRSV-A and exhibited unique phylogenetic characteristics.


Subject(s)
Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus, Human/genetics , Evolution, Molecular , Humans , Incidence , Myanmar/epidemiology , Phylogeny , Prevalence , Respiratory Syncytial Virus Infections/virology
3.
PLoS One ; 14(1): e0210550, 2019.
Article in English | MEDLINE | ID: mdl-30629691

ABSTRACT

We investigated the circulation patterns of human influenza A and B viruses in Myanmar between 2010 and 2015 by analyzing full HA genes. Upper respiratory tract specimens were collected from patients with symptoms of influenza-like illness. A total of 2,860 respiratory samples were screened by influenza rapid diagnostic test, of which 1,577 (55.1%) and 810 (28.3%) were positive for influenza A and B, respectively. Of the 1,010 specimens that were positive for virus isolation, 370 (36.6%) were A(H1N1)pdm09, 327 (32.4%) were A(H3N2), 130 (12.9%) B(Victoria), and 183 (18.1%) were B(Yamagata) viruses. Our data showed that influenza epidemics mainly occurred during the rainy season in Myanmar. Our three study sites, Yangon, Pyinmana, and Pyin Oo Lwin had similar seasonality and circulating type and subtype of influenza in a given year. Moreover, viruses circulating in Myanmar during the study period were closely related genetically to those detected in Thailand, India, and China. Phylogeographic analysis showed that A(H1N1)pdm09 viruses in Myanmar originated from Europe and migrated to other countries via Japan. Similarly, A(H3N2) viruses in Myanmar originated from Europe, and disseminated to the various countries via Australia. In addition, Myanmar plays a key role in reseeding of influenza B viruses to Southeast Asia and East Asia as well as Europe and Africa. Thus, we concluded that influenza virus in Myanmar has a strong link to neighboring Asian countries, Europe and Oceania.


Subject(s)
Influenza A virus/genetics , Influenza B virus/genetics , Influenza, Human/epidemiology , Influenza, Human/virology , Animals , Dogs , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza A virus/isolation & purification , Influenza B virus/isolation & purification , Influenza, Human/diagnosis , Madin Darby Canine Kidney Cells , Myanmar/epidemiology , Phylogeny , Phylogeography , RNA, Viral/genetics , RNA, Viral/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...