Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 164
Filter
1.
Fitoterapia ; : 106108, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964561

ABSTRACT

BACKGROUND: In Chinese Pharmacopeia, Picrasma quassioides (PQ) stems and leaves are recorded as Kumu with antimicrobial, anti-cancer, anti-parasitic effects, etc. However, thick stems are predominantly utilized as medicine in many Asian countries, with leaves rarely used. By now, the phytochemistry and bioactivity of PQ leaves are not well investigated. METHODS: An Orbitrap Elite mass spectrometer was employed to comprehensively investigate PQ stems and leaves sourced from 7 different locations. Additionally, their bioactivities were evaluated against 5 fungi, 6 Gram-positive bacteria and 9 Gram-negative bacteria, a tumor cell line (A549), a non-tumor cell line (WI-26 VA4) and N2 wild-type Caenorhabditis elegans. RESULTS: Bioassay results demonstrated the efficacy of both leaves and stems against tumor cells, several bacteria and fungi, while only leaves exhibited anthelmintic activity against Caenorhabditis elegans. A total of 181 compounds were identified from PQ stems and leaves, including 43 ß-carbolines, 20 bis ß-carbolines, 8 canthinone alkaloids, 56 quassinoids, 12 triterpenoids, 13 terpenoid derivatives, 11 flavonoids, 7 coumarins, and 11 phenolic derivatives, from which 10 compounds were identified as indicator components for quality evaluation. Most alkaloids and triterpenoids were concentrated in PQ stems, while leaves exhibited higher levels of quassinoids and other carbohydrate (CHO) components. CONCLUSION: PQ leaves exhibit distinct chemical profiles and bioactivity with the stems, suggesting their suitability for medicinal purposes. So far, the antibacterial, antifungal, and anthelmintic activities of PQ leaves were first reported here, and considering PQ sustainability, the abundant leaves are recommended for increased utilization, particularly for their rich content of PQ quassinoids.

2.
J Trop Med ; 2024: 8564163, 2024.
Article in English | MEDLINE | ID: mdl-38974476

ABSTRACT

Background: Helminthiasis is endemic in Chad and constitutes a public health problem, particularly among school-age children. The aim of this study was to evaluate the anthelmintic activity of extracts of Khaya anthotheca and Faidherbia albida used in Chad by traditional healers for the treatment of helminthiasis. Methods: The anthelmintic activity was assessed against Heligmosomoides polygyrus and Caenorhabditis elegans larvae using the Worm Microtracker. Embryonated eggs, L1, L2, and L3 larvae of H. polygyrus were obtained after 24 h, 48 h, and 7 days of coproculture and L4 larvae of C. elegans culture using standard procedures. One hundred microliters of extracts at various concentrations, with albendazole and distilled water were, put in contact with 100 µL of H. polygyrus suspension (containing 50 parasites at various developmental stages) in a microplate and incubated for 20 h at 25°C in the Worm Microtracker. The same procedure was adopted for C. elegans, but with 180 µL of OP50. 19 µL of C. elegans suspension (containing 50 larvae) was put in contact with 1 µL of extract at various concentrations and incubated in the Worm Microtracker. Docking studies were carried out using the Schrodinger Maestro software's Glide module. The score function in the software was used to rank and group distinct possible adduct structures generated by molecular docking. Results: The aqueous and ethanolic extracts of F. albida at a concentration of 2.5 mg/mL showed the same activity as albendazole (100 ± 0.00) on hatching. The IC50s of the aqueous extracts of the two plants (IC50: 0.6212 mg/mL and 0.71 mg/mL, respectively) were comparable on egg hatching of H. polygyrus with no significant difference (p ≥ 0.05) with respect to the ethanol extracts (IC50: 0.70 mg/mL and 0.81 mg/mL, respectively). There was no significant difference between the percentage inhibition of extracts and albendazole on the L1 larvae of H. polygyrus (p ≥ 0.05). The aqueous extracts acted more effectively than the ethanol extracts on the L1 larvae of H. polygyrus with an IC50 of 0.5588 and ∼9.858e - 005 mg/ml, respectively, for K. anthotheca and F. albida. The aqueous extracts of K. anthotheca and F. albida on L3 larvae of H. polygyrus had inhibitory percentages of 92.6 ± 0.62 and 91.37 ± 0.8 at 2.5 mg/mL which were lower than albendazole (100 ± 0.00). The aqueous extracts of K. anthotheca and F. albida on C. elegance showed IC50 of 0.2775 µg/mL and 0.5115 µg/mL, respectively, and were more effective than the ethanol extracts. Examining K. anthotheca and F. albida through the interaction with the protein receptor and its results also confirmed our assumption that the compound used has hydroxyl and carbonyl groups as well as aromatic rings and is exposed to phenolic and flavonoid groups in a more specific way, and it shows a better inhibitory effect. Conclusions: This study scientifically validates the use of extracts of the two plants in the traditional treatment of helminthiasis. However, it will be necessary to evaluate the in vivo anthelmintic activity and toxicity. Examining the ADME properties of these compounds also supports the potential of these ligands to be transformed into pharmaceutical forms.

3.
ACS Appl Mater Interfaces ; 16(26): 33548-33558, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38902856

ABSTRACT

Solid-oxide electrolysis cells are a clean energy conversion device with the ability to directly electrolyze the conversion of CO2 to CO efficiently. However, their practical applications are limited due to insufficient CO2 adsorption performance of the cathode materials. To overcome this issue, the A-site cation deficiency strategy has been applied in a layered perovskite PrBaFe1.6Ni0.4O6-δ (PBFN) cathode for direct CO2 electrolysis. The introduction of 5% deficiency at the Pr/Ba site leads to a significant increase in the concentration of oxygen vacancies (nonstoichiometric number δ of oxygen vacancies increased from 0.093 to 0.132), which greatly accelerates the CO2 adsorption performance as well as the O2- transport capacity toward the CO2 reduction reaction (CO2RR). CO2 temperature-programmed desorption indicates that A-site cation-deficient (PrBa)0.95Fe1.6Ni0.4O6-δ (PB95FN) shows a larger desorption peak area and a higher desorption temperature. PB95FN also exhibits a greater presence of carbonate in Fourier transform infrared (FT-IR) spectroscopy. The electrical conductivity relaxation test shows that the introduction of the 5% A-site deficiency effectively improves the surface oxygen exchange and diffusion kinetics of PB95FN. The current density of the electrolysis cell with the (PrBa)0.95Fe1.6Ni0.4O6-δ (PB95FN) cathode reaches 0.876 A·cm-2 under 1.5 V at 800 °C, which is 41% higher than that of PB100FN. Moreover, the PB95FN cathode demonstrates excellent long-term stability over 100 h and better short-term stability than PB100FN under high voltages, which can be ascribed to the enhanced CO2 adsorption performance. The PB95FN cathode maintains a porous structure and tightly binds to the electrolyte after stability testing. This study highlights the potential of regulating oxygen defects in layered perovskite PrBaFe1.6Ni0.4O6-δ cathode materials via incorporation of cation deficiency toward high-temperature CO2 electrolysis.

5.
Opt Lett ; 49(11): 2966-2969, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824304

ABSTRACT

Over the past decades, spin qubits in silicon carbide (SiC) have emerged as promising platforms for a wide range of quantum technologies. The fluorescence intensity holds significant importance in the performance of quantum photonics, quantum information process, and sensitivity of quantum sensing. In this work, a dual-layer Au/SiO2 dielectric cavity is employed to enhance the fluorescence intensity of a shallow silicon vacancy ensemble in 4H-SiC. Experimental results demonstrate an effective fourfold augmentation in fluorescence counts at saturating laser power, corroborating our theoretical predictions. Based on this, we further investigate the influence of dielectric cavities on the contrast and linewidth of optically detected magnetic resonance (ODMR). There is a 1.6-fold improvement in magnetic field sensitivity. In spin echo experiments, coherence times remain constant regardless of the thickness of dielectric cavities. These experiments pave the way for broader applications of dielectric cavities in SiC-based quantum technologies.

6.
Sheng Li Xue Bao ; 76(3): 429-437, 2024 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-38939937

ABSTRACT

As a multifunctional adipokine, chemerin plays a crucial role in various pathophysiological processes through endocrine and paracrine manner. It can bind to three known receptors (ChemR23, GPR1 and CCRL2) and participate in energy metabolism, glucose and lipid metabolism, and inflammation, especially in metabolic diseases. Polycystic ovary syndrome (PCOS) is one of the most common endocrine diseases, which seriously affects the normal life of women of childbearing age. Patients with PCOS have significantly increased serum levels of chemerin and high expression of chemerin in their ovaries. More and more studies have shown that chemerin is involved in the occurrence and development of PCOS by affecting obesity, insulin resistance, hyperandrogenism, oxidative stress and inflammatory response. This article mainly reviews the production, subtypes, function and receptors of chemerin protein, summarizes and discusses the research status of chemerin protein in PCOS from the perspectives of metabolism, reproduction and inflammation, and provides theoretical basis and reference for the clinical diagnosis and treatment of PCOS.


Subject(s)
Chemokines , Intercellular Signaling Peptides and Proteins , Polycystic Ovary Syndrome , Polycystic Ovary Syndrome/metabolism , Humans , Chemokines/metabolism , Female , Intercellular Signaling Peptides and Proteins/metabolism , Receptors, Chemokine/metabolism , Insulin Resistance , Animals , Receptors, G-Protein-Coupled/metabolism , Chemotactic Factors/metabolism
7.
Environ Pollut ; 355: 124102, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38710362

ABSTRACT

Lead (Pb) and cadmium (Cd) have been identified as the primary contaminants in soil, posing potential health threats. This study aimed to examine the effects of applying a nitrogen fertilizer and a fungal agent Trichoderma harzianum J2 (nitrogen alone, fungi alone, and combined use) on the phytoremediation of soils co-contaminated with Pb and Cd. The growth of Leucaena leucocephala was monitored in the seedling, differentiation, and maturity stages to fully comprehend the remediation mechanisms. In the maturity stage, the biomass of L. leucocephala significantly increased by 18% and 29% under nitrogen-alone (NCK+) and fungal agent-alone treatments (J2), respectively, compared with the control in contaminated soil (CK+). The remediation factors of Pb and Cd with NCK+ treatment significantly increased by 50% and 125%, respectively, while those with J2 treatment increased by 73% and 145%, respectively. The partial least squares path model suggested that the nitrogen-related soil properties were prominent factors affecting phytoextraction compared with biotic factors (microbial diversity and plant growth). This model explained 2.56 of the variation in Cd concentration under J2 treatment, and 2.97 and 2.82 of the variation in Pb concentration under NCK+ and J2 treatments, respectively. The redundancy analysis showed that the samples under NCK+ and J2 treatments were clustered similarly in all growth stages. Also, Chytridiomycota, Mucoromucota, and Ciliophora were the key bioindicators for coping with heavy metals. Overall, a similar remediation mechanism allowed T. harzianum J2 to replace the nitrogen fertilizer to avoid secondary pollution. In addition, their combined use further increased the remediation efficiency.


Subject(s)
Biodegradation, Environmental , Cadmium , Fertilizers , Metals, Heavy , Nitrogen , Soil Pollutants , Fertilizers/analysis , Soil Pollutants/metabolism , Nitrogen/metabolism , Cadmium/metabolism , Metals, Heavy/metabolism , Lead/metabolism , Soil/chemistry , Hypocreales/metabolism
8.
Plant Methods ; 20(1): 72, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760854

ABSTRACT

BACKGROUND: Single-cell analysis, a rapidly evolving field, encounters significant challenges in detecting individual cells within complex plant tissues, particularly oil cells (OCs). The intricate process of single-cell isolation, coupled with the inherent chemical volatility of oil cells, necessitates a comprehensive methodology. RESULTS: This study presents a method for obtaining intact OC from Asari Radix et Rhizoma (ARR), a traditional herbal medicine. The developed approach facilitates both qualitative and quantitative analysis of diverse OCs. To determine the most reliable approach, four practical methods-laser capture microdissection, micromanipulation capturing, micromanipulation piping, and cell picking-were systematically compared and evaluated, unequivocally establishing cell picking as the most effective method for OC isolation and chemical analysis. Microscopic observations showed that OCs predominantly distribute in the cortex of adventitious and fibrous roots, as well as the pith and cortex of the rhizome, with distinct morphologies-oblong in roots and circular in rhizomes. Sixty-three volatile constituents were identified in OCs, with eighteen compounds exhibiting significant differences. Safrole, methyleugenol, and asaricin emerged as the most abundant constituents in OCs. Notably, cis-4-thujanol and tetramethylpyrazine were exclusive to rhizome OCs, while isoeugenol methyl ether was specific to fibrous root OCs based on the detections. ARR roots and rhizomes displayed marked disparities in OC distribution, morphology, and constituents. CONCLUSION: The study highlights the efficacy of cell picking coupled with HS-SPME-GC-MS as a flexible, reliable, and sensitive method for OC isolation and chemical analysis, providing a robust methodology for future endeavors in single-cell analyses.

9.
Pharmacology ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38810606

ABSTRACT

INTRODUCTION: Cisplatin (DDP) is the commonest chemo drug in lung adenocarcinoma (LUAD) treatment, and DDP resistance is a significant barrier to therapeutic therapy. This study attempted to elucidate the impact of PDK1 on DDP resistance in LUAD and its mechanism. METHODS: Bioinformatics analysis was used to determine the expression and enriched pathways of PDK1 in LUAD tissue. Subsequently, E2F8, the upstream transcription factor of PDK1 was predicted, and the binding relationship between the two was analyzed using dual-luciferase and ChIP experiments. PDK1 and E2F8 levels in LUAD tissues and cells were detected via qPCR. Cell viability, proliferation, and apoptosis levels were assayed by CCK-8, EdU, and flow cytometry experiments, respectively. Comet assay was used to assess DNA damage, and immunofluorescence was used to assess the expression of γ-H2AX. NHEJ reporter assay was to assess DNA repair efficiency. Western blot tested levels of DNA damage repair (DDR)-related proteins. Immunohistochemistry assessed the expression of relevant genes. Finally, an animal model was constructed to investigate the influence of PDK1 expression on LUAD growth. RESULTS: PDK1 was found to be upregulated in LUAD and enhanced DDP resistance by mediating DDR. E2F8 was identified as an upstream transcription factor of PDK1 and was highly expressed in LUAD. Rescue experiments presented that knocking down E2F8 could weaken the promotion of PDK1 overexpression on DDR-mediated DDP resistance in LUAD. In vivo experiments showed that knocking down PDK1 plus DDP significantly reduced the growth of xenograft tumors. CONCLUSION: Our results indicated that the E2F8/PDK1 axis mediated DDR to promote DDP resistance in LUAD. Our findings lead to an improved treatment strategy after drug resistance.

10.
IEEE Comput Graph Appl ; 44(3): 30-42, 2024.
Article in English | MEDLINE | ID: mdl-38648158

ABSTRACT

In this article, we propose TraVis, an interactive system that allows users to explore and analyze complex traffic trajectory data at urban intersections. Trajectory data contain a large amount of spatio-temporal information, and while previous studies have mainly focused on the macroscopic aspects of traffic flow, TraVis employs visualization methods to investigate and analyze microscopic traffic events (i.e., high-value scenes in trajectory data). TraVis contains a novel view design and provides multiple interaction modalities to offer users the most intuitive insights into high-value scenes. With this system, users can gain a better understanding of urban intersection traffic information, identify different types of high-value scenes, explore the reasons behind their occurrence, and gain deeper insights into urban intersection traffic. Through two case studies, we illustrate how to use the system and validate its effectiveness.

11.
J Clin Neurosci ; 123: 137-147, 2024 May.
Article in English | MEDLINE | ID: mdl-38574685

ABSTRACT

OBJECTIVE: This study aimed to analyze the risk factors for recurrent ischemic stroke in patients with symptomatic intracranial atherosclerotic stenosis (ICAS) who underwent successful stent placement and to establish a nomogram prediction model. METHODS: We utilized data from a prospective collection of 430 consecutive patients at Jining NO.1 People's Hospital from November 2021 to November 2022, conducting further analysis on the subset of 400 patients who met the inclusion criteria. They were further divided into training (n=321) and validation (n=79) groups. In the training group, we used univariate and multivariate COX regression to find independent risk factors for recurrent stroke and then created a nomogram. The assessment of the nomogram's discrimination and calibration was performed through the examination of various measures including the Consistency index (C-index), the area under the receiver operating characteristic (ROC) curves (AUC), and the calibration plots. Decision curve analysis (DCA) was used to evaluate the clinical utility of the nomogram by quantifying the net benefit to the patient under different threshold probabilities. RESULTS: The nomogram for predicting recurrent ischemic stroke in symptomatic ICAS patients after stent placement utilizes six variables: coronary heart disease (CHD), smoking, multiple ICAS, systolic blood pressure (SBP), in-stent restenosis (ISR), and fasting plasma glucose. The C-index (0.884 for the training cohort and 0.87 for the validation cohort) and the time-dependent AUC (>0.7) indicated satisfactory discriminative ability of the nomogram. Furthermore, DCA indicated a clinical net benefit from the nomogram. CONCLUSIONS: The predictive model constructed includes six predictive factors: CHD, smoking, multiple ICAS, SBP, ISR and fasting blood glucose. The model demonstrates good predictive ability and can be utilized to predict ischemic stroke recurrence in patients with symptomatic ICAS after successful stent placement.


Subject(s)
Intracranial Arteriosclerosis , Ischemic Stroke , Nomograms , Recurrence , Stents , Humans , Male , Female , Intracranial Arteriosclerosis/surgery , Intracranial Arteriosclerosis/diagnostic imaging , Middle Aged , Ischemic Stroke/surgery , Ischemic Stroke/etiology , Aged , Risk Factors , Prospective Studies , Constriction, Pathologic/surgery
13.
Nat Prod Res ; : 1-11, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38648539

ABSTRACT

This study was conducted to isolate and identify the bioactive compounds from the ethanolic extract of Syzygium cumini leaf against Vibrio species through a bioassay-guided fractionation. The ethanol extract was exposed to silica gel chromatography followed by reversed phase HPLC to isolate the most effective fraction against V. parahaemolyticus. Using further UHPLC-orbitrap-ion trap mass spectrometry, five compounds were isolated with broad-spectrum potency against a range of Vibrio species viz. V. parahaemolyticus, V. alginolyticus, V. harveyi, V. vulnificus and V. anguillarum. The IC50 values for the compounds ranged from 8 to 48 µg/mL against the most sensitive species V. vulnificus and 58 to >400 µg/mL against V. alginolyticus. The results of the toxicity tests demonstrated that the compounds were not harmful for shrimp. The study's findings indicate that S. cumini leaf extract may contain bioactive molecules that are able to be substituted for antibiotics to treat vibriosis in shrimp farming.

14.
J Environ Manage ; 357: 120695, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38552521

ABSTRACT

Urbanization can either directly occupy forests or indirectly lead to forest loss elsewhere through cultivated land displacement, resulting in further forest fragmentation and ecosystem service (ES) loss. However, the effects of urban expansion on forest area and ESs are unknown, and this is especially true for indirect effects. Taking Zhejiang Province, China, a typical deforested province, as an example, this study quantified the direct and indirect effects of urban expansion on forest area and five ESs (timber yield, water yield, carbon sequestration, soil conservation, and biodiversity) from 2000 to 2020, explored the relationship between forest structure (forest proportion, mean patch area, edge density, and mean euclidean nearest neighbor distance) change and ESs, and revealed the telecoupling of urban expansion and forest loss and cascade effects among urbanization, deforestation, forest structure, and ESs. The results indicated that the indirect forest loss (4.30%-6.15%) caused by cultivated land displacement due to urban expansion was larger than the direct forest loss (2.42%). Urban expansion has a greater negative impact on carbon sequestration (6.40%-8.20%), water yield (6.08%-7.78%), and biodiversity (5.79%-7.44%) than on timber yield (4.77%-6.17%) and soil conservation (4.43%-5.77%). The indirect forest ES loss was approximately 2.83-4.34 times greater than the direct forest ES loss. Most forest ESs showed a nonlinear significant positive correlation with changes in forest proportion and mean patch area and a significant nonlinear negative correlation with changes in edge density and mean Euclidean nearest neighbor distance (p < 0.05). There is telecoupling between urban expansion in one region and forest ES loss in other distant regions. This study contributes to guiding sustainable forest conservation and management globally.


Subject(s)
Conservation of Natural Resources , Ecosystem , Forests , Soil , China , Water
15.
Crit Rev Biotechnol ; : 1-17, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38503543

ABSTRACT

As an important cell factory, industrial yeast has been widely used for the production of compounds ranging from bulk chemicals to complex natural products. However, various adverse conditions including toxic products, extreme pH, and hyperosmosis etc., severely restrict microbial growth and metabolic performance, limiting the fermentation efficiency and diminishing its competitiveness. Therefore, enhancing the tolerance and robustness of yeasts is critical to ensure reliable and sustainable production of metabolites in complex industrial production processes. In this review, we provide a comprehensive review of various strategies for improving the tolerance of yeast cells, including random mutagenesis, system metabolic engineering, and material-mediated immobilization cell technology. It is expected that this review will provide a new perspective to realize the response and intelligent regulation of yeast cells to environmental stresses.

16.
BMC Plant Biol ; 24(1): 224, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38539093

ABSTRACT

BACKGROUND: Drought severely limits sunflower production especially at the seedling stage. To investigate the response mechanism of sunflowers to drought stress, we utilized two genotypes of sunflower materials with different drought resistances as test materials. The physiological responses were investigated under well-watered (0 h) and drought-stressed conditions (24 h, 48 h, and 72 h). RESULTS: ANOVA revealed the greatest differences in physiological indices between 72 h of drought stress and 0 h of drought stress. Transcriptome analysis was performed after 72 h of drought stress. At 0 h, there were 7482 and 5627 differentially expressed genes (DEGs) in the leaves of K55 and K58, respectively, and 2150 and 2527 DEGs in the roots of K55 and K58, respectively. A total of 870 transcription factors (TFs) were identified among theDEGs, among which the high-abundance TF families included AP2/ERF, MYB, bHLH,and WRKY. Five modules were screened using weighted gene coexpressionnetwork analysis (WGCNA), three and two of which were positively and negatively, respectively, related to physiological traits. KEGG analysis revealedthat under drought stress, "photosynthesis", "carotenoid biosynthesis", "starch and sucrose metabolism", "ribosome", "carotenoid biosynthesis", "starch and sucrose metabolism", "protein phosphorylation" and "phytohormone signaling" are six important metabolic pathways involved in the response of sunflower to drought stress. Cytoscape software was used to visualize the three key modules, and the hub genes were screened. Finally, a total of 99 important candidate genes that may be associated with the drought response in sunflower plants were obtained, and the homology of these genes was compared with that in Arabidopsis thaliana. CONCLUSIONS: Taken together, our findings could lead to a better understanding of drought tolerance in sunflowers and facilitate the selection of drought-tolerant sunflower varieties.


Subject(s)
Arabidopsis , Helianthus , Humans , Transcriptome , Helianthus/genetics , Helianthus/metabolism , Drought Resistance , Gene Expression Profiling , Droughts , Arabidopsis/genetics , Starch/metabolism , Carotenoids/metabolism , Sucrose/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant
17.
World J Microbiol Biotechnol ; 40(3): 94, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38349469

ABSTRACT

D-glucuronic acid is a kind of glucose derivative, which has excellent properties such as anti-oxidation, treatment of liver disease and hyperlipidemia, and has been widely used in medicine, cosmetics, food and other fields. The traditional production methods of D-glucuronic acid mainly include natural extraction and chemical synthesis, which can no longer meet the growing market demand. The production of D-glucuronic acid by biocatalysis has become a promising alternative method because of its high efficiency and environmental friendliness. This review describes different production methods of D-glucuronic acid, including single enzyme catalysis, multi-enzyme cascade, whole cell catalysis and co-culture, as well as the intervention of some special catalysts. In addition, some feasible enzyme engineering strategies are provided, including the application of enzyme immobilized scaffold, enzyme mutation and high-throughput screening, which provide good ideas for the research of D-glucuronic acid biocatalysis.


Subject(s)
Engineering , Biocatalysis , Catalysis , Coculture Techniques , Glucuronic Acid
18.
Small ; : e2400085, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329164

ABSTRACT

Modulating the solvation structure of hydrated zinc ions using organic additives stands as a pragmatic approach to suppress dendrite formation and corrosion on zinc metal anodes (ZMAs), thereby enhancing the rechargeability of aqueous Zn-ion batteries. However, fundamental screening principles for organic additives with diverse molecular structures remain elusive, especially for isomers with the same molecular formula. This study delves into the impact of three isomeric hexagonal alcohols (mannitol, sorbitol, and galactitol) as additives in adjusting Zn2+ solvation structural behaviors within ZnSO4 baseline electrolytes. Electrical measurements and molecular simulations reveal the specific molecular structure of mannitol, which features interweaving electron clouds between adjacent hydroxyl groups, achieving a high local electron cloud density. This phenomenon significantly enhances desolvation abilities, thus establishing a more stable anode/electrolyte interface chemistry. Even at 5 mA cm-2 for 2.5 mAh cm-2 capacity, Zn||Zn symmetric cells with mannitol-regulated electrolyte display an impressive 1170 h lifespan, far exceeding those with other isomer additives and is nearly tenfold longer than that with a pure ZnSO4 electrolyte (120 h). Rather than strictly adhering to focusing on chemical composition, this study with emphasis on optimizing molecular structure offers a promising untapped dimension to screen more efficient additives to enhance the reversibility of ZMAs.

19.
Plants (Basel) ; 13(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38337993

ABSTRACT

Temperature determines biochar structure during pyrolysis. However, differences in holding time and feedstock types may affect this relationship. The conditional process analysis model was used in this paper to investigate the potential to affect this mechanism. The branch and leaf parts of Taxodium ascendens were separately pyrolyzed at 350, 450, 650, and 750 °C, and kept for 0.5, 1, and 2 h at each target temperature. We measured the fixed carbon and ash contents and the elemental composition (C, H, O and N) of the raw materials and their char samples. After plotting a Van Krevelen (VK) diagram to determine the aromatization of chars, the changes in the functional groups were analyzed using Fourier transform infrared (FTIR), Raman, and X-ray photoelectron spectroscopy (XPS). The results revealed that pyrolysis at temperatures between 450 and 750 °C accounted for the aromatization of biochar because the atomic H/C ratio of branch-based chars (BC) decreased from 0.53-0.59 to 0.15-0.18, and the ratio of leaf-based chars (LC) decreased from 0.56-0.68 to 0.20-0.22; the atomic O/C ratio of BC decreased from 0.22-0.27 to 0.08-0.11, while that of LC decreased from 0.26-0.28 to 0.18-0.21. Moreover, the average contents of N (1.89%) and ash (13%) in LC were evidently greater than that in BC (N:0.62%; Ash: 4%). Therefore, BC was superior to LC in terms of the stability of biochar. In addition, the increasing ID/IG and ID/I(DR+GL) ratios in BC and LC indicated an increasing amount of the amorphous aromatic carbon structure with medium-sized (2~6 rings) fused benzene rings. According to the CPA analysis, an extension of the holding time significantly enhanced the increase in aromatic structures of LC with temperature. But this extension slightly reduced the growth in aromatic structures of BC. All indicate that holding time and feedstock types (branch or leaf feedstock) could significantly affect the variation in biochar aromatic structure with respect to temperature.

20.
Acta Neuropathol ; 147(1): 6, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38170217

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disorder, characterized by selective loss of motor neurons (MNs). A number of causative genetic mutations underlie the disease, including mutations in the fused in sarcoma (FUS) gene, which can lead to both juvenile and late-onset ALS. Although ALS results from MN death, there is evidence that dysfunctional glial cells, including oligodendroglia, contribute to neurodegeneration. Here, we used human induced pluripotent stem cells (hiPSCs) with a R521H or a P525L mutation in FUS and their isogenic controls to generate oligodendrocyte progenitor cells (OPCs) by inducing SOX10 expression from a TET-On SOX10 cassette. Mutant and control iPSCs differentiated efficiently into OPCs. RNA sequencing identified a myelin sheath-related phenotype in mutant OPCs. Lipidomic studies demonstrated defects in myelin-related lipids, with a reduction of glycerophospholipids in mutant OPCs. Interestingly, FUSR521H OPCs displayed a decrease in the phosphatidylcholine/phosphatidylethanolamine ratio, known to be associated with maintaining membrane integrity. A proximity ligation assay further indicated that mitochondria-associated endoplasmic reticulum membranes (MAM) were diminished in both mutant FUS OPCs. Moreover, both mutant FUS OPCs displayed increased susceptibility to ER stress when exposed to thapsigargin, and exhibited impaired mitochondrial respiration and reduced Ca2+ signaling from ER Ca2+ stores. Taken together, these results demonstrate a pathological role of mutant FUS in OPCs, causing defects in lipid metabolism associated with MAM disruption manifested by impaired mitochondrial metabolism with increased susceptibility to ER stress and with suppressed physiological Ca2+ signaling. As such, further exploration of the role of oligodendrocyte dysfunction in the demise of MNs is crucial and will provide new insights into the complex cellular mechanisms underlying ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Induced Pluripotent Stem Cells , Humans , Amyotrophic Lateral Sclerosis/pathology , Induced Pluripotent Stem Cells/metabolism , Motor Neurons/metabolism , Mutation , Oligodendroglia/metabolism , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...