Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
1.
Talanta ; 278: 126449, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38908140

ABSTRACT

Human papillomavirus (HPV) is a prevalent sexually transmitted pathogen associated with cervical cancer. Detecting high-risk HPV (hr-HPV) infections is crucial for cervical cancer prevention, particularly in resource-limited settings. Here, we present a highly sensitive and specific sensor for HPV-16 detection based on CRISPR/Cas12a coupled with enhanced single nanoparticle dark-field microscopy (DFM) imaging techniques. Ag-Au satellites were assembled through the hybridization of AgNPs-based spherical nucleic acid (Ag-SNA) and AuNPs-based spherical nucleic acid (Au-SNA), and their disassembly upon target-mediated cleavage by the Cas12a protein was monitored using DFM for HPV-16 quantification. To enhance the cleavage efficiency and detection sensitivity, the composition of the ssDNA sequences on Ag-SNA and Au-SNA was optimized. Additionally, we explored using the SynSed technique (synergistic sedimentation of Brownian motion suppression and dehydration transfer) as an alternative particle transfer method in DFM imaging to traditional electrostatic deposition. This addresses the issue of inconsistent deposition efficiency of Ag-Au satellites and their disassembly due to their size and charge differences. The sensor achieved a remarkable limit of detection (LOD) of 10 fM, lowered by 9-fold compared to traditional electrostatic deposition methods. Clinical testing in DNA extractions from 10 human cervical swabs demonstrated significant response differences between the positive and negative samples. Our sensor offers a promising solution for sensitive and specific HPV-16 detection, with implications for cancer screening and management.

2.
Front Endocrinol (Lausanne) ; 15: 1373774, 2024.
Article in English | MEDLINE | ID: mdl-38863929

ABSTRACT

Background: Asthenozoospermia, a type of male infertility, is primarily caused by dysfunctional sperm mitochondria. Despite previous bioinformatics analysis identifying potential key lncRNAs, miRNAs, hub genes, and pathways associated with asthenospermia, there is still a need to explore additional molecular mechanisms and potential biomarkers for this condition. Methods: We integrated data from Gene Expression Omnibus (GEO) (GSE22331, GSE34514, and GSE160749) and performed bioinformatics analysis to identify differentially expressed genes (DEGs) between normozoospermia and asthenozoospermia. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to gain insights into biological processes and signaling pathways. Weighted Gene Co-expression Network Analysis (WGCNA) identified gene modules associated with asthenozoospermia. Expression levels of key genes were assessed using datasets and experimental data. Gene Set Enrichment Analysis (GSEA) and correlation analysis identified pathways associated with the hub gene and explore the relationship between the ZNF764 and COQ9 and mitochondrial autophagy-related genes. Competitive endogenous RNA (ceRNA) networks were constructed, and in vitro experiments using exosome samples were conducted to validate this finding. Results: COQ9 was identified as a marker gene in asthenozoospermia, involved in autophagy, ATP-dependent chromatin remodeling, endocytosis, and cell cycle, etc. The ceRNA regulatory network (LINC00893/miR-125a-5p/COQ9) was constructed, and PCR demonstrated that LINC00893 and COQ9 were downregulated in asthenozoospermia, while miR-125a-5p and m6A methylation level of LINC00893 were upregulated in asthenozoospermia compared to normozoospermic individuals. Conclusion: The ceRNA regulatory network (LINC00893/miR-125a-5p/COQ9) likely plays a crucial role in the mechanism of asthenozoospermia. However, further functional experiments are needed to fully understand its significance.


Subject(s)
Asthenozoospermia , Biomarkers , Computational Biology , Gene Regulatory Networks , Humans , Male , Asthenozoospermia/genetics , Asthenozoospermia/metabolism , Computational Biology/methods , Biomarkers/metabolism , Gene Expression Profiling , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Ontology , Signal Transduction/genetics , Spermatozoa/metabolism
3.
Fitoterapia ; 176: 106013, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38740342

ABSTRACT

Astragalus membranaceus and Cordyceps kyushuensis were used to obtain Astragalus membranaceus-Cordyceps kyushuensis bi-directional solid fermentation products using the bi-directional solid fermentation technique. The fermentation products were isolated and purified to obtain 20 individual compounds, of which compound 1 was a novel isoflavane, and compounds 2, 3, and 4 were novel isoflavones, along with 16 known compounds. In vitro experiments demonstrated that compounds 4, 5, 8, 10, and 20 exhibited significant inhibitory activity against A549 lung cancer cells. Specifically, the IC50 value of the novel compound 4 was 53.4 µM, while the IC50 value of cordycepin was 9.0 µM.


Subject(s)
Astragalus propinquus , Cordyceps , Fermentation , Cordyceps/chemistry , Astragalus propinquus/chemistry , Humans , A549 Cells , Molecular Structure , Flavonoids/pharmacology , Flavonoids/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Isoflavones/pharmacology , Isoflavones/isolation & purification , Deoxyadenosines
4.
Article in English | MEDLINE | ID: mdl-38727937

ABSTRACT

Diagnostic and prognostic values of Kruppel-like factor 5 (KLF5) and Runt-related transcription factor 1 (RUNX1) were determined in sepsis-induced acute kidney injury (SI-AKI). The study included 120 septic patients and set two groups: SI-AKI group (n = 60) or non-AKI group (n = 60). Fasting venous blood was drawn, and KLF5 and RUNX1 levels were measured. The receiver operating characteristic curve was plotted for diagnostic evaluation of KLF5 and RUNX1 in SI-AKI. The correlation between KLF5 and RUNX1 and serum creatinine (Scr), cystatin C (Cys-C), and kidney injury molecule 1 (KIM-1) were assessed by Pearson method. Predictive values of KLF5 and RUNX1 in 28-day survival of SI-AKI patients were considered by Kaplan-Meier survival curves and multivariate Cox regression analysis. Serum KLF5 and RUNX1 in SI-AKI patients were upregulated. Serum KLF5 and RUNX1 were of high diagnostic value in distinguishing SI-AKI patients from non-AKI patients. KLF5 and RUNX1 were in a positive correlation with Scr, Cys-C, and KIM-1, respectively. The 28-day survival of SI-AKI patients with high serum KLF5 or RUNX1 expression was poor, and serum KLF5 and RUNX1 expression were independently correlated with SI-AKI patients' survival. KLF5 and RUNX1 have diagnostic and prognostic values in SI-AKI patients.

5.
Front Psychiatry ; 15: 1310259, 2024.
Article in English | MEDLINE | ID: mdl-38779543

ABSTRACT

Background: Epidemiological evidence indicates a high correlation and comorbidity between Attention Deficit Hyperactivity Disorder (ADHD) and Restless Legs Syndrome (RLS). Objective: We aimed to investigate the causal relationship and shared genetic architecture between ADHD and RLS, as well as explore potential causal associations between both disorders and peripheral iron status. Methods: We performed two-sample Mendelian randomization (MR) analyses using summary statistics from genome-wide meta-analyses of ADHD, RLS, and peripheral iron status (serum iron, ferritin, transferrin saturation, and total iron binding capacity). Additionally, we employed linkage disequilibrium score regression (LDSC) to assess genetic correlations between ADHD and RLS using genetic data. Results: Our MR results supports a causal effect from ADHD (as exposure) to RLS (as outcome) (inverse variance weighted OR = 1.20, 95% CI: 1.08-1.34, p = 0.001). Conversely, we found no a causal association from RLS to ADHD (inverse variance weighted OR = 1.04, 95% CI: 0.99-1.09, p = 0.11). LDSC analysis did not detect a significant genetic correlation between RLS and ADHD (Rg = 0.3, SE = 0.16, p = 0.068). Furthermore, no evidence supported a causal relationship between peripheral iron deficiency and the RLS or ADHD onset. However, RLS may have been associated with a genetic predisposition to reduced serum ferritin levels (OR = 1.20, 95% CI: 1.00-1.04, p = 0.047). Conclusion: This study suggests that ADHD is an independent risk factor for RLS, while RLS may confer a genetic predisposition to reduced serum ferritin levels. Limitations: The GWAS summary data utilized originated from populations of European ancestry, limiting the generalizability of conclusions to other populations. Clinical implications: The potential co-occurrence of RLS in individuals with ADHD should be considered during diagnosis and treatment. Moreover, iron supplementation may be beneficial for alleviating RLS symptoms.

6.
Cell Rep ; 43(3): 113934, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38461416

ABSTRACT

Neutrophils are important innate immune cells with plasticity, heterogenicity, and functional ambivalency. While bone marrow is often regarded as the primary source of neutrophil production, the roles of extramedullary production in regulating neutrophil plasticity and heterogenicity in autoimmune diseases remain poorly understood. Here, we report that the lack of wingless-type MMTV integration site family member 5 (WNT5) unleashes anti-inflammatory protection against colitis in mice, accompanied by reduced colonic CD8+ T cell activation and enhanced splenic extramedullary myelopoiesis. In addition, colitis upregulates WNT5 expression in splenic stromal cells. The ablation of WNT5 leads to increased splenic production of hematopoietic niche factors, as well as elevated numbers of splenic neutrophils with heightened CD8+ T cell suppressive capability, in part due to elevated CD101 expression and attenuated pro-inflammatory activities. Thus, our study reveals a mechanism by which neutrophil plasticity and heterogenicity are regulated in colitis through WNT5 and highlights the role of splenic neutrophil production in shaping inflammatory outcomes.


Subject(s)
Colitis , Neutrophils , Animals , Mice , Myelopoiesis , Colitis/chemically induced , Bone Marrow
7.
Clin Lab ; 70(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38345986

ABSTRACT

BACKGROUND: von Willebrand disease (vWD), caused by mutations in the von Willebrand factor (vWF) coding gene, is a disease characterized by abnormal coagulation activity and a severe tendency for hemorrhage. Therefore, identifying mutations in vWF is important for diagnosing congenital vWD. METHODS: We studied a 23-year-old male vWD patient and his parents. Clotting methods were used to determine activated partial thromboplastin time (aPTT), prothrombin time (PT), fibrinogen (FIB) levels, FVIII activity. Chromogenic substrate method was used to determine vWF antigen and activity. The platelet count was determined. Mutations were searched using whole-exome sequencing and certified by Sanger sequencing. Clinical data, including activated partial thromboplastin time (APTT), prothrombin time (PT), thrombin time (TT), fibrinogen levels, FX activity, FX antigen levels, and the platelet count were collected. A mixing study was performed to eliminate the presence of coagulation factor inhibitors and lupus anticoagulants. Mutations were screened by using whole-exome sequencing (WES) and were verified by using Sanger sequencing. RESULTS: The proband showed severely decreased vWF antigen, vWF activity, and FVIII activity. RIPA (RISTO-CETIN-induced platelet aggregation) was 0%. Data from WES showed that the proband carried compound heterozygous variants vWF: NM_000552.5 (c.3213C>A p.Cys1071Ter) and vWF: NM_000552.5 (c.6598+2T>C). The proband's mother carried variant vWF: NM_000552.5 (c.3213C>A p.Cys1071Ter) while the proband's father carried variant vWF: NM_000552.5 (c.6598+2T>C). All laboratory test indexes of the proband's parents, including vWF antigen, vWF activity, and FVIII activity, were within the normal ranges. CONCLUSIONS: We identified a compound heterozygosis with two novel mutations in vWF (c.3213C>A, c.6598+2T >C) in a family pedigree, and our results demonstrate that the compound heterozygous mutations probably exacerbate vWD.


Subject(s)
von Willebrand Diseases , von Willebrand Factor , Male , Humans , Young Adult , Adult , von Willebrand Factor/genetics , von Willebrand Diseases/diagnosis , von Willebrand Diseases/genetics , Pedigree , Mutation , Fibrinogen , China
8.
Infect Drug Resist ; 17: 475-484, 2024.
Article in English | MEDLINE | ID: mdl-38348232

ABSTRACT

Background: In the context of progressively uncontrolled drug resistance of bacteria, the difficulty of treating Klebsiella (KP)-induced pneumonia increases. Searching for drugs other than antibiotics has become an urgent task. Vitamin D (VD), meanwhile, is shown to be capable of treating pneumonia. Therefore, we aimed to explore the effects and mechanisms of VD on KP-infected rats. Methods: Male Sprague Dawley rats were divided into the Control, VD, KP and KP+VD groups. A rat pneumonia model was induced using an intratracheal drop of 2.4×108 CFU/mL KP. VD treatment was performed by gavage using 5 µg/kg. Subsequently, the survival of the rats was recorded, and the lungs, bronchoalveolar lavage fluid, and feces of the rats were collected 4 days after KP infection. Next, the water content of lung tissues was measured by the wet-to-dry weight ratio. Histopathological changes of lung tissues were observed by Hematoxylin and Eosin staining and the levels of inflammatory factors (TNF-α, IL-1ß, MCP1) were detected using ELISA. The feces of rats in each group were also subjected to 16S rDNA gene analysis of intestinal microbiota. Results: Compared with the KP group, the KP+VD group showed a significant increase in survival, a significant decrease in water content and bacterial counts in the lungs, a significant improvement in lung injury, and a significant decline in the levels of TNF-α, IL-1ß, and MCP1. According to the 16S rDNA sequencing, VD altered the structure of the intestinal bacterial community in the KP-infected rats and made the species richness similar to that of healthy rats. Additionally, the abundance of Anaeroglobus was significantly increased in the KP+VD group. Conclusion: VD modulates intestinal microbiota to increase the resistance of rats to pneumonia caused by Klebsiella infection.

9.
Cell Rep Med ; 5(2): 101357, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38237597

ABSTRACT

Programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) blockade has become a mainstay of cancer immunotherapy. Targeting the PD-1/PD-L1 axis with small molecules is an attractive approach to enhance antitumor immunity. Here, we identified a natural marine product, benzosceptrin C (BC), that enhances the cytotoxicity of T cells to cancer cells by reducing the abundance of PD-L1. Furthermore, BC exerts its antitumor effect in mice bearing MC38 tumors by activating tumor-infiltrating T cell immunity. Mechanistic studies suggest that BC can prevent palmitoylation of PD-L1 by inhibiting DHHC3 enzymatic activity. Subsequently, PD-L1 is transferred from the membrane to the cytoplasm and cannot return to the membrane via recycling endosomes, triggering lysosome-mediated degradation of PD-L1. Moreover, the combination of BC and anti-CTLA4 effectively enhances antitumor T cell immunity. Our findings reveal a previously unrecognized antitumor mechanism of BC and represent an alternative immune checkpoint blockade (ICB) therapeutic strategy to enhance the efficacy of cancer immunotherapy.


Subject(s)
B7-H1 Antigen , Imidazoles , Neoplasms , Pyrroles , Animals , Mice , Programmed Cell Death 1 Receptor , Neoplasms/drug therapy , Neoplasms/metabolism , Lysosomes/metabolism
10.
Mol Med Rep ; 29(2)2024 02.
Article in English | MEDLINE | ID: mdl-38099337

ABSTRACT

The role of long intergenic noncoding RNA 00893 (Linc00893) in asthenozoospermia (AS) and its impact on sperm motility remains unclear The present study explored the effect of Linc00893 on AS, specifically its effect on sperm motility and its relationship with spermatogonial stem cell (SSC) vitality and myosin heavy chain 9 (MYH9) protein expression. Linc00893 expression was analyzed in semen samples using reverse transcription­quantitative PCR, revealing a significant downregulation in samples from individuals with AS compared with those from healthy subjects. This downregulation was found to be negatively correlated with parameters of sperm motility. To further understand the role of Linc00893, small interfering RNA was used to knockdown its expression in SSCs. This knockdown led to a marked decrease in cell vitality and an increase in apoptosis. Notably, Linc00893 knockdown was shown to inhibit MYH9 expression by competitively binding with microRNA­107, a finding verified by dual­luciferase reporter and RNA immunoprecipitation assays. Furthermore, using the GSE160749 dataset from the Gene Expression Omnibus database, it was revealed that MYH9 protein expression was downregulated in AS samples. Subsequently, lentiviral vectors were constructed to induce overexpression of MYH9, which in turn reduced SSC apoptosis and counteracted the apoptosis triggered by Linc00893 knockdown. In conclusion, the present study identified the role of Linc00893 in AS, particularly its regulatory impact on sperm motility, SSC vitality and MYH9 expression. These findings may provide information on the potential regulatory mechanisms in AS development, and identify Linc00893 and MYH9 as possible targets for diagnosing and treating AS­related disorders.


Subject(s)
Asthenozoospermia , MicroRNAs , Humans , Male , Asthenozoospermia/genetics , Asthenozoospermia/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA/metabolism , Semen Analysis , Sperm Motility/genetics , Spermatozoa/metabolism , RNA, Untranslated/genetics
11.
Materials (Basel) ; 16(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38068145

ABSTRACT

In order to develop carbonyl iron-enhanced electromagnetic wave-absorbing composites, this paper utilizes two different morphologies of carbonyl iron powder (CIP), spherical and flake-like, which are blended with aqueous polyurethane (PU) in three different ratios to prepare impregnating solutions. Polyester (PET) needle-punched nonwoven materials are impregnated with these solutions to produce electromagnetic wave-absorbing composites. First, electromagnetic parameters of the two CIP particle types, spherical carbonyl iron (SCIP) and flake-like carbonyl iron (FCIP), are tested with the coaxial method, followed by calculation of the results of their electromagnetic wave absorption performance. Next, the composites are subjected to microscopic morphology observation, tensile testing, and arched frame method electromagnetic wave absorption performance testing. The results indicate that the microwave absorption performance of FCIP is significantly better than that of SCIP. The minimum reflection loss value for F3, a kind of FCIP-modified nonwoven fabric, at the thickness of 1 mm, at 18 GHz is -17 dB. This value is even better than the calculated RL value of CIP at the thickness of 1 mm. The anisotropic shape of flake-like magnetic materials is further strengthened when adhering to the surface of PET fiber material. Additionally, the modified composites with carbonyl iron exhibit higher tensile strength compared with pure PET. The addition of fibrous skeletal materials is expected to enhance the impedance matching of flake-like magnetic particles, forming a wearable and microwave-absorbing composite.

12.
Cell Rep ; 42(12): 113518, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38041812

ABSTRACT

The dysfunction and clonal constriction of tumor-infiltrating CD8+ T cells are accompanied by alterations in cellular metabolism; however, how the cell-intrinsic metabolic pathway specifies intratumoral CD8+ T cell features remains elusive. Here, we show that cell-autonomous generation of nicotinamide adenine dinucleotide (NAD+) via the kynurenine pathway (KP) contributes to the maintenance of intratumoral CD8+ T cell metabolic and functional fitness. De novo NAD+ synthesis is involved in CD8+ T cell metabolism and antitumor function. KP-derived NAD+ promotes PTEN deacetylation, thereby facilitating PTEN degradation and preventing PTEN-dependent metabolic defects. Importantly, impaired cell-autonomous NAD+ synthesis limits CD8+ T cell responses in human colorectal cancer samples. Our results reveal that KP-derived NAD+ regulates the CD8+ T cell metabolic and functional state by restricting PTEN activity and suggest that modulation of de novo NAD+ synthesis could restore CD8+ T cell metabolic fitness and antitumor function.


Subject(s)
CD8-Positive T-Lymphocytes , NAD , Humans , NAD/metabolism , CD8-Positive T-Lymphocytes/metabolism , Kynurenine/metabolism , Metabolic Networks and Pathways
13.
Diabetol Metab Syndr ; 15(1): 260, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38115042

ABSTRACT

BACKGROUND AND AIMS: Proprotein convertase subtilisin/kexin type 9 (PCSK9) is considered a new biomarker for atherosclerosis, but its ability to predict cardiovascular outcomes has been controversial. This study aimed to address the lack of data on PCSK9, coronary heart disease (CHD) severity, and major cardiovascular events (MACEs) in patients with type 2 diabetes mellitus (T2DM). METHODS: A total of 2984 T2DM patients underwent selective coronary angiography, and their serum PCSK9 levels were measured using enzyme-linked immunosorbent assay. Correlation and logistic regression analyses were performed to investigate the association between PCSK9 expression and CHD severity. This study used Cox regression analysis to assess the association between circulating PCSK9 levels and the risk of MACEs. RESULTS: Circulating PCSK9 levels were significantly higher in the CHD group than in the non-CHD group [554.62 (265.11) ng/mL vs. 496.86 (129.05) ng/mL, p < 0.001]. Circulating PCSK9 levels positively correlated with CHD severity (diseased vessels: r = 0.35, p < 0.001; Gensini score: r = 0.46, p < 0.001). Elevated PCSK9 levels are an independent risk factor for CHD risk and severity (CHD group vs. non-CHD group: OR = 2.829, 95% CI: 1.771-4.520, p < 0.001; three vessel disease group vs. one vessel disease group: OR = 4.800, 95% CI: 2.387-9.652, p < 0.001; high GS group vs. low GS group: OR = 5.534, 95% CI: 2.733-11.208, p < 0.001). Through a six-year follow-up and multivariate Cox regression analysis, elevated circulating PCSK9 levels were found to be independently associated with MACEs in all participants (HR: 3.416, 5% CI: 2.485-4.697, p < 0.001; adjusted HR: 2.780, 95% CI: 1.930-4.004, p < 0.001). CONCLUSIONS: Serum PCSK9 levels were positively correlated with multi-vessel CHD and Gensini score. Elevated circulating PCSK9 levels are an independent risk factor for CHD and increased incidence of MACEs in T2DM.

14.
Front Pharmacol ; 14: 1223746, 2023.
Article in English | MEDLINE | ID: mdl-38034987

ABSTRACT

Objective: This study was determined to investigate the impact of intranasal dexmedetomidine (DEX) on postoperative sleep quality in older patients (age over 65) with chronic insomnia during their hospitalization after surgery. Design: A randomized double-blind controlled trial was conducted to compare the effects of intranasal dexmedetomidine spray with a placebo group. Setting and Participants: The study was carried out at Xiangya Hospital, Central South University. 110 participants with chronic insomnia were analyzed. Methods: This trial enrolled older patients who underwent total hip/knee arthroplasty and randomized them to receive intranasal dexmedetomidine (2.0 µg/kg) or saline daily at around 9 p.m. after surgery until discharge. The primary outcomes were subjective sleep quality assessed with the Leeds Sleep Evaluation Questionnaire (LSEQ). The secondary outcomes included the objective sleep quality measured with the Acti-graph, the Pittsburgh Sleep Quality Index (PSQI), the Insomnia Severity Index (ISI). The other outcomes included the incidence of delirium, levels of inflammatory factors, visual analog scale (VAS) pain scores, postoperative opioid consumption, and treatment-related adverse events. Results: 174 patients were screened for eligibility, and 110 were recruited and analyzed. The DEX group had significantly higher scores on both the LSEQ-Getting to sleep and LSEQ-Quality of Sleep at each time point compared to the placebo (p < 0.0001), The least squares (LS) mean difference in LSEQ-GTS score at T0 between placebo group and DEX group was 2 (95% CI, -1-6), p = 0.4071 and at T5 was -14 (95% CI, -17 to -10), p < 0.0001; The LS mean difference in the LSEQ-QOS score at T0 was -1 (95% CI, -4 to 1), p = 0.4821 and at T5 was -16 (95% CI, -21 to -10), p < 0.0001. The DEX group exhibited significant improvement in Total Sleep Time (TST), Sleep Onset Latency (SOL), and Sleep Efficiency (SE), at each time point after treatment compared to the placebo group (p < 0.0001). The PSQI and ISI scores in the DEX group were reduced after treatment (p < 0.001). No significant adverse events were reported with the use of dexmedetomidine. Conclusion and Implications: This study demonstrates that intranasal administration of dexmedetomidine improves postoperative sleep quality in older patients with chronic insomnia who undergo surgery, without increasing the incidence of adverse effects. Clinical Trial Registration: http://www.chictr.org.cn/, identifier ChiCTR2200057133.

15.
Ann Hematol ; 102(12): 3593-3601, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37831153

ABSTRACT

Hepatitis B virus (HBV)has a high, chronic infection rate in Asian populations, but only few studies have analyzed the effect of Epstein-Barr virus (EBV) or Cytomegalovirus (CMV) reactivation in patients exposed to HBV after haploidentical hematopoietic stem cell transplantation (haplo-HSCT). This study aimed to assess the clinical outcomes of these patients. We conducted a retrospective research including 61 patients exposed to HBV after undergoing haplo-HSCT. The patients were classified into two groups: the CMV reactivation group and no CMV reactivation group. The results were compared between the two groups using the K-W test for continuous variables, Pearson's chi-square test for categorical variables, Kaplan-Meier curves to estimate overall survival (OS) and leukemia-free survival (LFS), and a Cox proportional hazards model to analyze multivariable influences. The 3-year cumulative HBV reactivation rate was 8.2%. The median duration of HBV reactivation was 16 months (16-22 months) after haplo-HSCT. The CMV reactivation group had a higher cumulative incidence of HBV reactivation than the group without CMV reactivation. The EBV reactivation was substantially higher in the CMV reactivation group compared to that in the no CMV reactivation group (37.0% vs.5.9% respectively; P = 0.002). Furthermore, EBV reactivation was a risk factor for 1-year LFS and 1-year OS. Based on our data, EBV reactivation was related to worse outcomes in patients exposed to HBV after haplo-HSCT, whereas CMV reactivation was not.


Subject(s)
Cytomegalovirus Infections , Epstein-Barr Virus Infections , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia , Humans , Herpesvirus 4, Human , Hepatitis B virus , Epstein-Barr Virus Infections/epidemiology , Epstein-Barr Virus Infections/etiology , Retrospective Studies , Hematopoietic Stem Cell Transplantation/adverse effects , Cytomegalovirus , Leukemia/complications , Virus Activation , Graft vs Host Disease/etiology
16.
Mol Cancer Res ; 21(10): 1107-1119, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37409971

ABSTRACT

Gastric cancer is one of the most frequent cancers in the world. Emerging clinical data show that ubiquitination system disruptions are likely involved in carcinoma genesis and progression. However, the precise role of ubiquitin (Ub)-mediated control of oncogene products or tumor suppressors in gastric cancer is unknown. Tripartite motif-containing 50 (TRIM50), an E3 ligase, was discovered by high-output screening of ubiquitination-related genes in tissues from patients with gastric cancer to be among the ubiquitination-related enzymes whose expression was most downregulated in gastric cancer. With two different databases, we verified that TRIM50 expression was lower in tumor tissues relative to normal tissues. TRIM50 also suppressed gastric cancer cell growth and migration in vitro and in vivo. JUP, a transcription factor, was identified as a new TRIM50 ubiquitination target by MS and coimmunoprecipitation experiments. TRIM50 increases JUP K63-linked polyubiquitination mostly at the K57 site. We discovered that the K57 site is critical for JUP nuclear translocation by prediction with the iNuLoC website and further studies. Furthermore, ubiquitination of the K57 site limits JUP nuclear translocation, consequently inhibiting the MYC signaling pathway. These findings identify TRIM50 as a novel coordinator in gastric cancer cells, providing a potential target for the development of new gastric cancer treatment strategies. IMPLICATIONS: TRIM50 regulates gastric cancer tumor progression, and these study suggest TRIM50 as a new cancer target.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Proto-Oncogene Proteins c-myc/genetics , Signal Transduction , Ubiquitination , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Cell Line, Tumor , gamma Catenin/genetics , gamma Catenin/metabolism , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism
17.
Psychiatry Investig ; 20(6): 559-566, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37357671

ABSTRACT

OBJECTIVE: This study's objective is to assess the efficacy and safety of Pulsed Magnetic Therapy System (PMTS) in improving insomnia disorder. METHODS: Participants with insomnia disorder were randomly assigned to receive either PMTS or sham treatment for four weeks (n= 153; PMTS: 76, sham: 77). Primary outcomes are the Insomnia Severity Index (ISI) scores at week 0 (baseline), 1, 2, 3, 4 (treatment), and 5 (follow-up). Secondary outcomes are the Pittsburgh Sleep Quality Index at baseline and week 4, and weekly sleep diary-derived values for sleep latency, sleep efficiency, real sleep time, waking after sleep onset, and sleep duration. RESULTS: The ISI scores of the PMTS group and the sham group were 7.13±0.50, 11.07±0.51 at week 4, respectively. There was a significant group×time interaction for ISI (F3.214, 485.271=24.25, p<0.001, ηp 2=0.138). Only the PMTS group experienced continuous improvement throughout the study; in contrast, the sham group only experienced a modest improvement after the first week of therapy. At the end of the treatment and one week after it, the response of the PMTS group were 69.7% (95% confidence interval [CI]: 58.6%-79.0%), 75.0% (95% CI: 64.1%-83.4%), respectively, which were higher than the response of the sham group (p<0.001). For each of the secondary outcomes, similar group×time interactions were discovered. The effects of the treatment persisted for at least a week. CONCLUSION: PMTS is safe and effective in improving insomnia disorders.

18.
Cell Signal ; 109: 110729, 2023 09.
Article in English | MEDLINE | ID: mdl-37257766

ABSTRACT

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer. Due to rapid progression and a lack of targetable receptors, TNBC is exceptionally difficult to treat. Available treatment options are nonspecific cytotoxic agents, which have had modest success; thus, there is a need for novel therapies for TNBC. The mammalian/mechanistic target of rapamycin (mTOR) signaling pathway is aberrantly activated in TNBC, and this pathway has been shown to promote cancer cell survival and chemoresistance. As such, mTOR inhibition has been considered a potential therapeutic strategy for TNBC. The mTOR inhibitor everolimus (EVE) has been approved for the treatment of estrogen positive breast cancer; however, its efficacy in TNBC is still undetermined. In this study, we evaluated the effects of EVE monotherapy and the mechanism of EVE resistance in the 4T1 model of TNBC. Whereas EVE monotherapy inhibited mTOR signaling activity, it did not attenuate tumor progression. Additionally, tumors from EVE-treated mice had abnormal vasculature characterized by disorganized architecture and hyperpermeability. We also found that treatment with EVE increased PD-L1 expression in intratumoral vascular endothelial cells, and this increase in endothelial cell-associated PD-L1 corresponded to reduced CD8 + T cell tumor infiltration. Importantly, combination treatment with anti-PD-1 antibody and EVE normalized the tumor vasculature, rescued CD8 + T cell tumor infiltration, and reduced tumor growth. Taken together, our findings improve our current understanding of mechanisms underlying mTOR inhibition resistance in TNBC and identify a novel combination treatment strategy in the treatment of mTOR resistant tumors.


Subject(s)
Everolimus , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Everolimus/pharmacology , Everolimus/therapeutic use , Triple Negative Breast Neoplasms/metabolism , B7-H1 Antigen , Endothelial Cells/metabolism , Cell Line, Tumor , TOR Serine-Threonine Kinases/metabolism , Mammals/metabolism
19.
Acta Biomater ; 166: 615-626, 2023 08.
Article in English | MEDLINE | ID: mdl-37209977

ABSTRACT

As an aggressive malignant bone tumor, osteosarcoma (OS) is usually found in children and adolescents. Computed tomography (CT) is an important tool for the clinical evaluation of osteosarcoma, but limits to low diagnostic specificity due to single parameters of traditional CT and modest signal-to-noise ratio of clinical iodinated contrast agents. As one kind of spectral CT, dual-energy CT (DECT), with the advantage of a provision of multi-parameter information, makes it possible to acquire the best signal-to-noise ratio image, accurate detection, as well as imaging-guided therapy of bone tumors. Hereby, we synthesized BiOI nanosheets (BiOI NSs) as a DECT contrast agent with superior imaging capability compared to iodine agents for clinical detection of OS. Meanwhile, the synthesized BiOI NSs with great biocompatibility is able to achieve effective radiotherapy (RT) by enhancing X-ray dose deposition at the tumor site, leading to DNA damage, which in turn inhibits tumor growth. This study offers a promising new avenue for DECT imaging-guided treatment of OS. STATEMENT OF SIGNIFICANCE: Osteosarcoma (OS) is a common primary malignant bone tumor. Traditional surgical procedures and conventional CT scans are often used for the treatment and monitoring of OS, but the effects are generally unsatisfactory. In this work, BiOI nanosheets (NSs) was reported for dual-energy CT (DECT) imaging-guided OS radiotherapy. The powerful and constant X-ray absorption of BiOI NSs at any energy guarantees excellent enhanced DECT imaging performance, allowing detailed visualization of OS through images with a better signal-to-noise ratio and guiding radiotherapy process. The deposition of X-rays could be greatly enhanced by Bi atoms to induce serious DNA damage in radiotherapy. Taken together, the BiOI NSs for DECT-guided radiotherapy will greatly improve the current treatment status of OS.


Subject(s)
Osteosarcoma , Tomography, X-Ray Computed , Child , Humans , Adolescent , Tomography, X-Ray Computed/methods , Contrast Media , Tomography , Signal-To-Noise Ratio , Osteosarcoma/diagnostic imaging , Osteosarcoma/radiotherapy
20.
Front Immunol ; 14: 1162211, 2023.
Article in English | MEDLINE | ID: mdl-37251408

ABSTRACT

Spatiotemporal separation of cellular components is vital to ensure biochemical processes. Membrane-bound organelles such as mitochondria and nuclei play a major role in isolating intracellular components, while membraneless organelles (MLOs) are accumulatively uncovered via liquid-liquid phase separation (LLPS) to mediate cellular spatiotemporal organization. MLOs orchestrate various key cellular processes, including protein localization, supramolecular assembly, gene expression, and signal transduction. During viral infection, LLPS not only participates in viral replication but also contributes to host antiviral immune responses. Therefore, a more comprehensive understanding of the roles of LLPS in virus infection may open up new avenues for treating viral infectious diseases. In this review, we focus on the antiviral defense mechanisms of LLPS in innate immunity and discuss the involvement of LLPS during viral replication and immune evasion escape, as well as the strategy of targeting LLPS to treat viral infectious diseases.


Subject(s)
Antiviral Agents , Cell Nucleus , Immunity
SELECTION OF CITATIONS
SEARCH DETAIL
...