Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 199
Filter
1.
Mikrochim Acta ; 191(8): 446, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963446

ABSTRACT

The stability of black phosphorene (BP) and its preparation and modification for developing and applying devices have become a hot topic in the interdisciplinary field. We propose ultrasound-electrochemistry co-assisted liquid-phase exfoliation as an eco-friendly one-step method to prepare gold-silver bimetallic nanoparticles (Au-AgNPs)-decorated BP nanozyme for smartphone-based portable sensing of 4-nitrophenol (4-NP) in different water sources. The structure, morphology, composition, and properties of Au-AgNPs-BP nanozyme are characterized by multiple instrumental analyses. Bimetallic salts are induced to efficiently occupy oxidative sites of BP to form highly stable Au-AgNPs-BP nanozyme and guarantee the integrity of the lamellar BP. The electrochemistry shortens the exfoliation time of the BP nanosheet and contributes to the loading efficiency of bimetallic nanoparticles on the BP nanosheet. Au-AgNPs-BP-modified screen-printed carbon electrode coupled with palm-sized smartphone-controlled wireless electrochemical analyzer as a portable wireless intelligent sensing platform was applied to the determination of 4-NP in a linear range of 0.6-10 µM with a limit of detection of 63 nM. It enables on-site determination of 4-NP content in lake water, river water, and irrigation ditch water. This work will provide a reference for an eco-friendly one-step preparation of bimetallic nanoparticle-decorated graphene-like materials as nanozymes and their smartphone-based portable sensing application outdoors.

2.
Mikrochim Acta ; 191(7): 387, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38869719

ABSTRACT

A novel construction strategy is introduced for an ultrasensitive dynamic light scattering (DLS) immunosensor targeting alpha fetoprotein (AFP). This approach relies on a self-assembled heptamer fusion protein (A1-C4bpα), incorporating the dual functions of multivalent recognition and crosslinking aggregation amplification due to the presence of seven AFP-specific A1 nanobodies on the A1-C4bpα heptamer. Leveraging antibody-functionalized magnetic nanoparticles for target AFP capture and DLS signal output, the proposed heptamer-assisted DLS immunosensor offers high sensitivity, strong specificity, and ease of operation. Under the optimized conditions, the designed DLS immunosensor demonstrates excellent linear detection of AFP in the concentration range 0.06 ng mL-1 to 512 ng mL-1, with a detection limit of 15 pg mL-1. The selectivity, accuracy, precision, practicability, and reliability of this newly developed method were further validated through an assay of AFP levels in spiked and actual human serum samples. This work introduces a novel approach for constructing ultrasensitive DLS immunosensors, easily extendable to the sensitive determination of other targets via simply replacing the nanobody sequence, holding great promise in various applications, particularly in disease diagnosis.


Subject(s)
Dynamic Light Scattering , Limit of Detection , alpha-Fetoproteins , alpha-Fetoproteins/analysis , alpha-Fetoproteins/immunology , Humans , Immunoassay/methods , Antibodies, Immobilized/immunology , Biosensing Techniques/methods , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/immunology , Magnetite Nanoparticles/chemistry
3.
J Environ Manage ; 365: 121454, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38897078

ABSTRACT

Green design involves the entire life cycle of a product, including stages such as raw material acquisition, production and manufacturing, sales and transportation, use, recycling, and disposal. Extracting customer requirements (CRs) related to product green design (PGD) is one of the necessary conditions for achieving the dual carbon goal. However, only a few studies have evaluated CRs for PGD from a full life cycle perspective. This study obtained 20,000 online reviews of washing machines from e-commerce platforms. The customers' sentiment tendencies toward the requirements of washing machines at various stages of their life cycle are analyzed and evaluated. The CRs contained in online washing machine reviews were identified through cluster analysis. Based on the life cycle theory, the product green design requirements (PGDRs) of CRs were extracted and analyzed. This study can provide theoretical and methodological support for green product design.

4.
Front Oncol ; 14: 1391850, 2024.
Article in English | MEDLINE | ID: mdl-38826791

ABSTRACT

Benign metastasizing leiomyoma (BML) is a rare disease that results from metastasis of uterine leiomyoma to distant sites with benign pathologic features. The lung is the most common metastatic site for BML. This report describes the case of a 49-year-old woman who presented with a mass in the abdominal wall with a surgical history of uterine myomectomy. Ultrasound and Magnetic resonance imaging (MRI) revealed multiple mass lesions. The histopathology of the mass specimen indicated BML. The imaging and clinical features of BML are discussed based on the characteristics of this case and related literature reports.

6.
Phytomedicine ; 132: 155831, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38908193

ABSTRACT

BACKGROUND: Based on the proposed lung-intestinal axis, there is a significant correlation between the microbiota and lung metastasis. Targeting the microbial composition is valuable in modulating the host response to cancer therapeutics. As a traditional Chinese medicine (TCM) formula, Shuangshen granules (SSG) are clinically useful in delaying lung metastasis, but its underlying mechanisms remain unknown. METHODS: The C57BL/6N mice were chosen to establish the Lewis lung cancer models. The broad-spectrum antibiotics (ABX) group was set up to estimate the effect of microbiota composition on metastasis. The therapeutic effects of different doses of SSG in treating lung metastasis were investigated through histopathology, immunohistochemistry, and Western blot analysis methods. Additionally, the phenotype of tumor-associated macrophages (TAMs) in the lung and blood was evaluated by flow cytometry. The fecal microbiota transplantation (FMT) and negative control (ABX plus high dose SSG group) experiments were also designed to assess intestinal microbiota's role in SSG intervention's outcome in lung metastasis. The 16S rRNA amplicon sequencing and Untargeted metabolomic analysis were used to analyze intestinal microbiota and metabolite changes mediated by SSG in tumor-bearing mice with lung metastasis. RESULT: ABX could observably lead to intestinal microbiota dysbiosis and enhance metastasis. SSG showed a significant chemopreventive effect in lung metastasis, reduced metastatic nodules and the expression levels of pre-metastatic niche biomarkers, and enriched the ratio of CD86+F4/80+CD11b+ cells, while FMT delayed metastasis similarly. The analysis of microbiota and metabolites revealed that SSG significantly enriched probiotics in feces, including Akkermansia muciniphila, Lachnoclostridium sp YL32, Limosilactobacillus reuteri, and potential anti-cancer serum metabolites, including Ginsenoside Rb1, Isoquinoline, Betulin and so on. We also investigated the mechanism of SSG protection against lung metastasis and showed that SSG regulated microbiota, improved TAMs polarization, and inhibited the expression of the NF-κB pathway. CONCLUSION: The results presented in our article demonstrated that SSG improved TAMs polarization and inhibited the NF-κB pathway by alleviating intestinal microbiota imbalance and metabolic disorders in tumor-bearing mice, resulting in delayed lung metastasis.

7.
J Hazard Mater ; 474: 134782, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38824781

ABSTRACT

For a plastic syringe, a stopper at the end of plunger is usually made of polydimethylsiloxane (PDMS, and co-ingredients). To reduce friction and prevent leakage between the stopper and barrel, short chain polymer of liquid PDMS is also used as lubricant. Consequently, an injection process can release solid PDMS debris from the stopper and barrel, and liquid PDMS droplets from the lubricant, both of which are confirmed herein as solid and liquid micro(nano)plastics. From molecular spectrum perspective to directly visualise those micro(nano)plastics, Raman imaging was employed to analyse hundreds-to-thousands of spectra (hyper spectrum or hyperspectral matrix) and significantly enhance signal-to-noise ratio. From morphology perspective to provide high resolution of image, scanning electron microscopy (SEM) was engaged to cross-check with Raman images and increase assignment / quantification certainty. The weak Raman imaging signal of nanoplastics was extracted using image deconvolution algorithm to remove the background noise and average the signal variation. To increase the result's representativeness and avoid quantification bias, multiple syringes were tested and multiple areas were randomly scanned toward statistical results. It was estimated that thousands of microplastics and millions of nanoplastics of solid/liquid PDMS might be injected when using a plastic syringe of 1 mL. Overall, Raman imaging (along with algorithm and SEM) can be helpful for further research on micro(nano)plastics, and it should be cautious to use plastic syringe due to the increasing concern on the emerging contamination of not only solid but also liquid micro(nano)plastics.

8.
Article in English | MEDLINE | ID: mdl-38940801

ABSTRACT

Background: Medicine logistics, particularly cryogenic storage, maintains pharmaceutical efficacy and safety. Ensuring seamless transportation and storage prevents spoilage, degradation, or contamination, safeguarding patient health. Objective: This study aimed to analyze the relationships among the components of the medication cold chain logistics system using grey relational analysis (GRA). Additionally, we utilized GRA to construct an adjacency matrix, facilitating a comprehensive understanding of the interdependencies within the system. Methods: Data from pertinent indices spanning 2021 and 2022 were utilized to conduct a quantitative analysis using GRA. This analysis aimed to identify the most influential elements affecting the growth of pharmaceutical cold chain logistics in a specific location. The negative aspects of the medication cold chain logistics system in particular areas were examined by assessing the grey relationship grades between various components and the medicine cold chain logistics system in those regions. Results: The analysis revealed significant insights into the correlated risk factors impacting medicine logistics operations. Through an examination of the financial status and operational processes of medicine logistics assets, four categories of risks were identified, encompassing transportation, storage, distribution, and quality management. These categories were established by analyzing the most significant risk factors across these operational domains. Additionally, GRA was employed to assess the factors influencing medicine logistics. The study found a strong relationship between key parameters, such as transportation risk and site facilities and equipment, and the growth of the pharmaceutical logistics sector. Operation risk emerged as the least influential factor, while site facilities and equipment, transportation risk, and operation risk demonstrated substantial influence on the region's medical logistics sector growth. Conclusion: This study provides important recommendations to improve medicine logistics, aiming to mitigate adverse effects and elevate inventory management. Implementation can enhance efficiency and safety in the medicine supply chain, benefiting patient care and public health.

9.
Diabetes Care ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935599

ABSTRACT

OBJECTIVE: The impact of age of diabetes diagnosis on dementia risk across the life course is poorly characterized. We estimated the lifetime risk of dementia by age of diabetes diagnosis. RESEARCH DESIGN AND METHODS: We included 13,087 participants from the Atherosclerosis Risk in Communities Study who were free from dementia at age 60 years. We categorized participants as having middle age-onset diabetes (diagnosis <60 years), older-onset diabetes (diagnosis 60-69 years), or no diabetes. Incident dementia was ascertained via adjudication and active surveillance. We used the cumulative incidence function estimator to characterize the lifetime risk of dementia by age of diabetes diagnosis while accounting for the competing risk of mortality. We used restricted mean survival time to calculate years lived without and with dementia. RESULTS: Among 13,087 participants, there were 2,982 individuals with dementia and 4,662 deaths without dementia during a median follow-up of 24.1 (percentile 25-percentile 75, 17.4-28.3) years. Individuals with middle age-onset diabetes had a significantly higher lifetime risk of dementia than those with older-onset diabetes (36.0% vs. 31.0%). Compared with those with no diabetes, participants with middle age-onset diabetes also had a higher cumulative incidence of dementia by age 80 years (16.1% vs. 9.4%), but a lower lifetime risk (36.0% vs. 45.6%) due to shorter survival. Individuals with middle age-onset diabetes developed dementia 4 and 1 years earlier than those without diabetes and those with older-onset diabetes, respectively. CONCLUSIONS: Preventing or delaying diabetes may be an important approach for reducing dementia risk throughout the life course.

10.
Phys Med Biol ; 69(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38729170

ABSTRACT

Objective. Ovarian cancer is the deadliest gynecologic malignancy worldwide. Ultrasound is the most useful non-invasive test for preoperative diagnosis of ovarian cancer. In this study, by leveraging multiple ultrasound images from the same patient to generate personalized, informative statistical radiomic features, we aimed to develop improved ultrasound image-based prognostic models for ovarian cancer.Approach. A total of 2057 ultrasound images from 514 ovarian cancer patients, including 355 patients with epithelial ovarian cancer, from two hospitals in China were collected for this study. The models were constructed using our recently developed Frequency Appearance in Multiple Univariate pre-Screening feature selection algorithm and Cox proportional hazards model.Main results. The models showed high predictive performance for overall survival (OS) and recurrence-free survival (RFS) in both epithelial and nonepithelial ovarian cancer, with concordance indices ranging from 0.773 to 0.794. Radiomic scores predicted 2 year OS and RFS risk groups with significant survival differences (log-rank test,P< 1.0 × 10-4for both validation cohorts). OS and RFS hazard ratios between low- and high-risk groups were 15.994 and 30.692 (internal cohort) and 19.339 and 19.760 (external cohort), respectively. The improved performance of these newly developed prognostic models was mainly attributed to the use of multiple preoperative ultrasound images from the same patient to generate statistical radiomic features, rather than simply using the largest tumor region of interest among them. The models also revealed that the roundness of tumor lesion shape was positively correlated with prognosis for ovarian cancer.Significance.The newly developed prognostic models based on statistical radiomic features from ultrasound images were highly predictive of the risk of cancer-related death and possible recurrence not only for patients with epithelial ovarian cancer but also for those with nonepithelial ovarian cancer. They thereby provide reliable, non-invasive markers for individualized prognosis evaluation and clinical decision-making for patients with ovarian cancer.


Subject(s)
Ovarian Neoplasms , Ultrasonography , Humans , Female , Ovarian Neoplasms/diagnostic imaging , Ovarian Neoplasms/mortality , Prognosis , Middle Aged , Image Processing, Computer-Assisted/methods , Adult , Aged , Radiomics
11.
Clin Rheumatol ; 43(7): 2343-2349, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38748302

ABSTRACT

The patient presented to the clinic with painful muscle swelling in the right lower extremity, which improved with immunosuppressive therapy. Initially, the condition was diagnosed as polymyositis but recurred soon after. After imaging and biopsy, the final diagnosis was primary skeletal muscle peripheral T-cell lymphoma, not otherwise specified (PSM-PTCL, NOS). In this report, we discuss the challenges in diagnosing and treating this aggressive malignancy and review the literature on PSM-PTCL, NOS. Key Points • To date, there are few reports of PSM-PTCL, NOS, and our case is the tenth. • It is crucial to consider PSM-PTCL, NOS, when presenting with localized muscle edema and unexplained pain. • Histopathological examination is likely the most effective method for diagnosing this rare disease.


Subject(s)
Lymphoma, T-Cell, Peripheral , Muscle, Skeletal , Myositis , Humans , Lymphoma, T-Cell, Peripheral/complications , Lymphoma, T-Cell, Peripheral/pathology , Lymphoma, T-Cell, Peripheral/diagnosis , Myositis/diagnosis , Myositis/complications , Myositis/pathology , Muscle, Skeletal/pathology , Male , Muscle Neoplasms/diagnostic imaging , Middle Aged , Biopsy , Immunosuppressive Agents/therapeutic use , Magnetic Resonance Imaging
12.
Biochem Biophys Res Commun ; 716: 149998, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38692012

ABSTRACT

The equilibrium between the hypertrophic growth of existing adipocytes and adipogenesis is vital in managing metabolic stability in white adipocytes when faced with overnutrition. Adipogenesis has been established as a key player in combating metabolic irregularities caused by various factors. However, the benefits of increasing adipogenesis-mediated white adipose tissue (WAT) expansion for metabolic health regulation remain uncertain. Our findings reveal an increase in Impdh2 expression during the adipogenesis phase, both in vivo and in vitro. Xmp enhances adipogenic potential by fostering mitotic clonal expansion (MCE). The conditional knockout of Impdh2 in adipocyte progenitor cells(APCs) in adult and aged mice effectively curbs white adipose tissue expansion, ameliorates glucose tolerance, and augments energy expenditure under high-fat diet (HFD). However, no significant difference is observed under normal chow diet (NCD). Concurrently, the knockout of Impdh2 in APCs significantly reduces the count of new adipocytes induced by HFD, without affecting adipocyte size. Mechanistically, Impdh2 regulates the proliferation of APCs during the MCE phase via Xmp. Exogenous Xmp can significantly offset the reduction in adipogenic abilities of APCs due to Impdh2 deficiency. In summary, we discovered that adipogenesis-mediated WAT expansion, induced by overnutrition, also contributes to metabolic abnormalities. Moreover, the pivotal role of Impdh2 in regulating adipogenesis in APCs offers a novel therapeutic approach to combat obesity.


Subject(s)
Adipocytes , Adipogenesis , Adipose Tissue, White , Diet, High-Fat , Mice, Knockout , Overnutrition , Animals , Adipose Tissue, White/metabolism , Adipogenesis/genetics , Overnutrition/metabolism , Overnutrition/genetics , Mice , Adipocytes/metabolism , Mice, Inbred C57BL , Male , Energy Metabolism/genetics , Gene Deletion , Cell Proliferation , Stem Cells/metabolism , Stem Cells/cytology , Stem Cells/pathology
13.
Small ; : e2311821, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597689

ABSTRACT

Lithium-air battery (LAB) is regarded as one of the most promising energy storage systems. However, the challenges arising from the lithium metal anode have significantly impeded the progress of LAB development. In this study, cellulose-based filter paper (FP) is utilized as a separator for ambient Li-air batteries to suppress dendrite growth and prevent H2O crossover. Thermogravimetric analysis and molecular spectrum reveal that FP enables ambient Li-air battery operation due to its surface functional groups derived from cellulose. The oxygen-enriched surface of cellulose not only enhances ion conductivity but also captures water and confines solvent molecules, thereby mitigating anode corrosion and side reactions. Compared with commercial glassfiber (GF) separator, this cellulose-based FP separator is cheaper, renewable, and environmentally friendly. Moreover, it requires less electrolyte while achieving prolonged and stable cycle life under real air environment conditions. This work presents a novel approach to realizing practical Li-air batteries by capturing water on the separator's surface. It also provides insights into the exploration and design of separators for enabling practical Li-air batteries toward their commercialization.

14.
Anal Chem ; 96(15): 5824-5831, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38573047

ABSTRACT

Infectious diseases pose a significant threat to global health, yet traditional microbiological identification methods suffer from drawbacks, such as high costs and long processing times. Raman spectroscopy, a label-free and noninvasive technique, provides rich chemical information and has tremendous potential in fast microbial diagnoses. Here, we propose a novel Combined Mutual Learning Net that precisely identifies microbial subspecies. It demonstrated an average identification accuracy of 87.96% in an open-access data set with thirty microbial strains, representing a 5.76% improvement. 50% of the microbial subspecies accuracies were elevated by 1% to 46%, especially for E. coli 2 improved from 31% to 77%. Furthermore, it achieved a remarkable subspecies accuracy of 92.4% in the custom-built fiber-optical tweezers Raman spectroscopy system, which collects Raman spectra at a single-cell level. This advancement demonstrates the effectiveness of this method in microbial subspecies identification, offering a promising solution for microbiology diagnosis.


Subject(s)
Escherichia coli , Optical Tweezers , Spectrum Analysis, Raman/methods
15.
Food Chem ; 449: 139244, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38583397

ABSTRACT

This study aimed to investigate the effects of edible gum addition on moisture changes in freeze-dried restructured strawberry blocks (FRSB), which involved five groups: the control, 1.2% guar gum, 1.2% gelatin, 1.2% pectin, and the composite group with 0.5% guar gum, 0.5% gelatin, and 0.45% pectin. The results indicated that the drying rates of the five groups of FRSB presented similar early acceleration and later deceleration trends. Moisture content in FRSB was linearly predicted by peak area of low field nuclear magnetic resonance with R2 higher than 0.90 for all the five groups. The FRSB samples in the gelatin and composition groups formed a denser porous structure and had a lower hygroscopicity after four days of storage. This study provides a theoretical basis for controlling the processing of FRSB.


Subject(s)
Fragaria , Freeze Drying , Galactans , Gelatin , Mannans , Pectins , Plant Gums , Water , Galactans/chemistry , Plant Gums/chemistry , Mannans/chemistry , Gelatin/chemistry , Pectins/chemistry , Fragaria/chemistry , Water/chemistry , Fruit/chemistry
16.
J Tissue Eng ; 15: 20417314241244997, 2024.
Article in English | MEDLINE | ID: mdl-38617462

ABSTRACT

The study focused on the effects of a triply periodic minimal surface (TPMS) scaffolds, varying in porosity, on the repair of mandibular defects in New Zealand white rabbits. Four TPMS configurations (40%, 50%, 60%, and 70% porosity) were fabricated with ß-tricalcium phosphate bioceramic via additive manufacturing. Scaffold properties were assessed through scanning electron microscopy and mechanical testing. For proliferation and adhesion assays, mouse bone marrow stem cells (BMSCs) were cultured on these scaffolds. In vivo, the scaffolds were implanted into rabbit mandibular defects for 2 months. Histological staining evaluated osteogenic potential. Moreover, RNA-sequencing analysis and RT-qPCR revealed the significant involvement of angiogenesis-related factors and Hippo signaling pathway in influencing BMSCs behavior. Notably, the 70% porosity TPMS scaffold exhibited optimal compressive strength, superior cell proliferation, adhesion, and significantly enhanced osteogenesis and angiogenesis. These findings underscore the substantial potential of 70% porosity TPMS scaffolds in effectively promoting bone regeneration within mandibular defects.

17.
Adv Sci (Weinh) ; 11(18): e2305695, 2024 May.
Article in English | MEDLINE | ID: mdl-38450886

ABSTRACT

Recent studies have shown that active colloidal motors using enzymatic reactions for propulsion hold special promise for applications in fields ranging from biology to material science. It will be desirable to have active colloids with capability of computation so that they can act autonomously to sense their surroundings and alter their own dynamics. It is shown how small chemical networks that make use of enzymatic chemical reactions on the colloid surface can be used to construct motor-based chemical logic gates. The basic features of coupled enzymatic reactions that are responsible for propulsion and underlie the construction and function of chemical gates are described using continuum theory and molecular simulation. Examples are given that show how colloids with specific chemical logic gates, can perform simple sensing tasks. Due to the diverse functions of different enzyme gates, operating alone or in circuits, the work presented here supports the suggestion that synthetic motors using such gates could be designed to operate in an autonomous way in order to complete complicated tasks.

18.
Neurosci Bull ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38498092

ABSTRACT

As a noninvasive technique, ultrasound stimulation is known to modulate neuronal activity both in vitro and in vivo. The latest explanation of this phenomenon is that the acoustic wave can activate the ion channels and further impact the electrophysiological properties of targeted neurons. However, the underlying mechanism of low-intensity pulsed ultrasound (LIPUS)-induced neuro-modulation effects is still unclear. Here, we characterize the excitatory effects of LIPUS on spontaneous activity and the intracellular Ca2+ homeostasis in cultured hippocampal neurons. By whole-cell patch clamp recording, we found that 15 min of 1-MHz LIPUS boosts the frequency of both spontaneous action potentials and spontaneous excitatory synaptic currents (sEPSCs) and also increases the amplitude of sEPSCs in hippocampal neurons. This phenomenon lasts for > 10 min after LIPUS exposure. Together with Ca2+ imaging, we clarified that LIPUS increases the [Ca2+]cyto level by facilitating L-type Ca2+ channels (LTCCs). In addition, due to the [Ca2+]cyto elevation by LIPUS exposure, the Ca2+-dependent CaMKII-CREB pathway can be activated within 30 min to further regulate the gene transcription and protein expression. Our work suggests that LIPUS regulates neuronal activity in a Ca2+-dependent manner via LTCCs. This may also explain the multi-activation effects of LIPUS beyond neurons. LIPUS stimulation potentiates spontaneous neuronal activity by increasing Ca2+ influx.

19.
J Nanobiotechnology ; 22(1): 111, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38486273

ABSTRACT

Brain damage is a common tissue damage caused by trauma or diseases, which can be life-threatening. Stem cell implantation is an emerging strategy treating brain damage. The stem cell is commonly embedded in a matrix material for implantation, which protects stem cell and induces cell differentiation. Cell differentiation induction by this material is decisive in the effectiveness of this treatment strategy. In this work, we present an injectable fibroin/MXene conductive hydrogel as stem cell carrier, which further enables in-vivo electrical stimulation upon stem cells implanted into damaged brain tissue. Cell differentiation characterization of stem cell showed high effectiveness of electrical stimulation in this system, which is comparable to pure conductive membrane. Axon growth density of the newly differentiated neurons increased by 290% and axon length by 320%. In addition, unfavored astrocyte differentiation is minimized. The therapeutic effect of this system is proved through traumatic brain injury model on rats. Combined with in vivo electrical stimulation, cavities formation is reduced after traumatic brain injury, and rat motor function recovery is significantly promoted.


Subject(s)
Bombyx , Brain Injuries, Traumatic , Fibroins , Mesenchymal Stem Cells , Neural Stem Cells , Nitrites , Transition Elements , Rats , Animals , Fibroins/metabolism , Fibroins/pharmacology , Bombyx/metabolism , Hydrogels/pharmacology , Neurons/metabolism , Brain/metabolism , Brain Injuries, Traumatic/metabolism
20.
Cell Prolif ; : e13639, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553796

ABSTRACT

Aneuploidy frequently occurs in cancer and developmental diseases such as Down syndrome, with its functional consequences implicated in dosage effects on gene expression and global perturbation of stress response and cell proliferation pathways. However, how aneuploidy affects spatial genome organization remains less understood. In this study, we addressed this question by utilizing the previously established isogenic wild-type (WT) and trisomic mouse embryonic stem cells (mESCs). We employed a combination of Hi-C, RNA-seq, chromosome painting and nascent RNA imaging technologies to compare the spatial genome structures and gene transcription among these cells. We found that trisomy has little effect on spatial genome organization at the level of A/B compartment or topologically associating domain (TAD). Inter-chromosomal interactions are associated with chromosome regions with high gene density, active histone modifications and high transcription levels, which are confirmed by imaging. Imaging also revealed contracted chromosome volume and weakened transcriptional activity for trisomic chromosomes, suggesting potential implications for the transcriptional output of these chromosomes. Our data resources and findings may contribute to a better understanding of the consequences of aneuploidy from the angle of spatial genome organization.

SELECTION OF CITATIONS
SEARCH DETAIL
...