Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.561
Filter
1.
Front Plant Sci ; 15: 1367781, 2024.
Article in English | MEDLINE | ID: mdl-38952844

ABSTRACT

The large water demand, insufficient deposition on the back of the leaf and the uneven distribution of droplets are the problems of traditional agricultural ground plant protection machinery, which leads to low agricultural control efficiency. Combined with the advantages of electrostatic spray technology and the characteristics of high working efficiency and low probability of droplets drift of ground sprayer, an inductive electrostatic boom spray system based on embedded electrode structure is designed and mounted on a large self-propelled boom sprayer for field testing. Based on the working characteristics of the fan nozzle and the analysis of the theory of charge, the inductive electrostatic spray device is designed. The performance of the device is tested and the rationality of the system design is verified by COMSOL numerical simulations, charge-to-mass ratio, and particle size distribution measurements. The spray deposition scanning software and the Box-Behnken experimental design method are used to analyze the spray droplet deposition rate and coverage density of the sprayer on the front and back of the target leaves. The results show that the embedded closed electrode structure designed in this paper can avoid the problem of electrode wetting, and the electric field generated by it is mainly concentrated in the spray liquid film area, and the intensity reaches 6~7 V/m. At the conventional application height (500 mm), the maximum charge-to-mass ratio is 2.91 mC/kg, and the average particle size is 168.22 µm, which is 12.87% lower than that of ordinary spray, when the spray pressure is 0.3 MPa and the electrostatic voltage is 12 kV. The results of field experiments show that the optimum combination of the working parameters with the spray speed is 8.40 m/s, the spray pressure is 0.35 MPa, the charging voltage is 11.50 kV, the amount of droplet deposition in the lower dorsal area of the blade is 1.44 µL·cm-2. This study can provide a certain basis for the application of electrostatic spray technology in ground sprayers.

2.
J Neurol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954034

ABSTRACT

OBJECTIVE: To evaluate the effectiveness and safety of nusinersen for the treatment of 5q-spinal muscular atrophy (SMA) among Chinese pediatric patients. METHODS: Using a longitudinal, multi-center registry, both prospective and retrospective data were collected from pediatric patients with 5q-SMA receiving nusinersen treatment across 18 centers in China. All patients fulfilling the eligibility criteria were included consecutively. Motor function outcomes were assessed post-treatment by SMA type. Safety profile was evaluated among patients starting nusinersen treatment post-enrollment. Descriptive analyses were used to report baseline characteristics, effectiveness, and safety results. RESULTS: As of March 2nd, 2023, 385 patients were included. Most patients demonstrated improvements or stability in motor function across all SMA types. Type II patients demonstrated mean changes [95% confidence interval (CI)] of 4.4 (3.4-5.4) and 4.1 (2.8-5.4) in Hammersmith Functional Motor Scale-Expanded (HFMSE), and 2.4 (1.7-3.1) and 2.3 (1.2-3.4) in Revised Upper Limb Module (RULM) scores at months 6 and 10. Type III patients exhibited mean changes (95% CI) of 3.9 (2.5-5.3) and 4.3 (2.6-6.0) in HFMSE, and 2.1 (1.2-3.0) and 1.5 (0.0-3.0) in RULM scores at months 6 and 10. Of the 132 patients, 62.9% experienced adverse events (AEs). Two patients experienced mild AEs (aseptic meningitis and myalgia) considered to be related to nusinersen by the investigator, with no sequelae. CONCLUSIONS: These data underscore the significance of nusinersen in Chinese pediatric patients with SMA regarding motor function improvement or stability, and support recommendations on nusinersen treatment by Chinese SMA guidelines and continuous coverage of nusinersen by basic medical insurance.

3.
Food Funct ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967039

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized primarily by cognitive impairment. Recent investigations have highlighted the potential of nutritional interventions that target the gut-brain axis, such as probiotics and prebiotics, in forestalling the onset of AD. In this study, whole-genome sequencing was employed to identify xylan as the optimal carbon source for the tryptophan metabolism regulating probiotic Clostridium sporogenes (C. sporogenes). Subsequent in vivo studies demonstrated that administration of a synbiotic formulation comprising C. sporogenes (1 × 1010 CFU per day) and xylan (1%, w/w) over a duration of 30 days markedly enhanced cognitive performance and spatial memory faculties in the 5xFAD transgenic AD mouse model. The synbiotic treatment significantly reduced amyloid-ß (Aß) accumulation in the cortex and hippocampus of the brain. Importantly, synbiotic therapy substantially restored the synaptic ultrastructure in AD mice and suppressed neuroinflammatory responses. Moreover, the intervention escalated levels of the microbial metabolite indole-3-propionic acid (IPA) and augmented the relative prevalence of IPA-synthesizing bacteria, Lachnospira and Clostridium, while reducing the dominant bacteria in AD, such as Aquabacterium, Corynebacterium, and Romboutsia. Notably, synbiotic treatment also prevented the disruption of gut barrier integrity. Correlation analysis indicated a strong positive association between gut microbiota-generated IPA levels and behavioral changes. In conclusion, this study demonstrates that synbiotic supplementation significantly improves cognitive and intellectual deficits in 5xFAD mice, which could be partly attributed to enhanced IPA production by gut microbiota. These findings provide a theoretical basis for considering synbiotic therapy as a novel microbiota-targeted approach for the treatment of metabolic and neurodegenerative diseases.

4.
Nat Commun ; 15(1): 5502, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951519

ABSTRACT

Resistance to chemotherapy has been a major hurdle that limits therapeutic benefits for many types of cancer. Here we systematically identify genetic drivers underlying chemoresistance by performing 30 genome-scale CRISPR knockout screens for seven chemotherapeutic agents in multiple cancer cells. Chemoresistance genes vary between conditions primarily due to distinct genetic background and mechanism of action of drugs, manifesting heterogeneous and multiplexed routes towards chemoresistance. By focusing on oxaliplatin and irinotecan resistance in colorectal cancer, we unravel that evolutionarily distinct chemoresistance can share consensus vulnerabilities identified by 26 second-round CRISPR screens with druggable gene library. We further pinpoint PLK4 as a therapeutic target to overcome oxaliplatin resistance in various models via genetic ablation or pharmacological inhibition, highlighting a single-agent strategy to antagonize evolutionarily distinct chemoresistance. Our study not only provides resources and insights into the molecular basis of chemoresistance, but also proposes potential biomarkers and therapeutic strategies against such resistance.


Subject(s)
Antineoplastic Agents , CRISPR-Cas Systems , Drug Resistance, Neoplasm , Irinotecan , Oxaliplatin , Protein Serine-Threonine Kinases , Drug Resistance, Neoplasm/genetics , Humans , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Oxaliplatin/pharmacology , Irinotecan/pharmacology , CRISPR-Cas Systems/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Colorectal Neoplasms/genetics , Colorectal Neoplasms/drug therapy , Animals , Neoplasms/genetics , Neoplasms/drug therapy , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Mice , Gene Expression Regulation, Neoplastic/drug effects
5.
Front Oncol ; 14: 1395159, 2024.
Article in English | MEDLINE | ID: mdl-38957322

ABSTRACT

Background: The performance of artificial intelligence (AI) in the prediction of lymph node (LN) metastasis in patients with oral squamous cell carcinoma (OSCC) has not been quantitatively evaluated. The purpose of this study was to conduct a systematic review and meta-analysis of published data on the diagnostic performance of CT and MRI based on AI algorithms for predicting LN metastases in patients with OSCC. Methods: We searched the Embase, PubMed (Medline), Web of Science, and Cochrane databases for studies on the use of AI in predicting LN metastasis in OSCC. Binary diagnostic accuracy data were extracted to obtain the outcomes of interest, namely, the area under the curve (AUC), sensitivity, and specificity, and compared the diagnostic performance of AI with that of radiologists. Subgroup analyses were performed with regard to different types of AI algorithms and imaging modalities. Results: Fourteen eligible studies were included in the meta-analysis. The AUC, sensitivity, and specificity of the AI models for the diagnosis of LN metastases were 0.92 (95% CI 0.89-0.94), 0.79 (95% CI 0.72-0.85), and 0.90 (95% CI 0.86-0.93), respectively. Promising diagnostic performance was observed in the subgroup analyses based on algorithm types [machine learning (ML) or deep learning (DL)] and imaging modalities (CT vs. MRI). The pooled diagnostic performance of AI was significantly better than that of experienced radiologists. Discussion: In conclusion, AI based on CT and MRI imaging has good diagnostic accuracy in predicting LN metastasis in patients with OSCC and thus has the potential for clinical application. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/#recordDetails, PROSPERO (No. CRD42024506159).

7.
Int J Biol Macromol ; 276(Pt 1): 133779, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992527

ABSTRACT

Intervertebral disc degeneration (IDD) is a highly prevalent musculoskeletal disorder that is associated with considerable morbidity. However, there is currently no drug available that has a definitive therapeutic effect on IDD. In this study, we aimed to identify the molecular features and potential therapeutic targets of IDD through a comprehensive multiomics profiling approach. By integrating transcriptomics, proteomics, and ultrastructural analyses, we discovered dysfunctions in various organelles, including mitochondria, the endoplasmic reticulum, the Golgi apparatus, and lysosomes. Metabolomics analysis revealed a reduction in total phosphatidylcholine (PC) content in IDD. Through integration of multiple omics techniques with disease phenotypes, a pivotal pathway regulated by the lysophosphatidylcholine acyltransferase 1 (LPCAT1)-PC axis was identified. LPCAT1 exhibited low expression levels and exhibited a positive correlation with PC content in IDD. Suppression of LPCAT1 resulted in inhibition of PC synthesis in nucleus pulposus cells, leading to a notable increase in nucleus pulposus cell senescence and damage to cellular organelles. Consequently, PC exhibits potential as a therapeutic agent, as it facilitates the repair of the biomembrane system and alleviates senescence in nucleus pulposus cells via reversal of downregulation of the LPCAT1-PC axis.

8.
Environ Pollut ; 358: 124526, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992826

ABSTRACT

Gabapentin (GBP), an antiepileptic drug to treat epilepsy and neuropathic pain, has become an emerging pollutant in aquatic environments. Previous results suggested that GBP can cause a potential toxicity on the heart development of zebrafish but its cardiovascular effects are still not clear. In the current study, zebrafish embryos were exposed to GBP at environmental relevant concentrations (0, 0.1, 10 and 1000 µg/L) to assess its impact on cardiovascular systems during the early life stage of zebrafish. GBP exposure induced an increase in heartbeat rate and blood flow. The development of blood vessels was also affected with the vascular width significantly decreased at 10 µg/L and higher concentration of GBP. GBP exposure led to an abnormal vascular development by inhibiting the expression of relevant genes (flk1, vegfr-3, gata1, vegfα, and vegfr-2). Furthermore, GBP at 0.1 µg/L elevated the levels of reactive oxygen species and antioxidant enzyme. The vascular cell apoptosis was promoted through genes like p53, bad, and bcl2. However, these adverse effects were reversible with the antioxidant N-acetyl-L-cysteine, highlighting the crucial role of oxidative damage in GBP induced vascular toxicity. This research offers new perspectives on the adverse outcome pathways of antiepileptic drugs in non-target aquatic organisms.

9.
Nat Commun ; 15(1): 5737, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982157

ABSTRACT

Exploring the promiscuity of native enzymes presents a promising strategy for expanding their synthetic applications, particularly for catalyzing challenging reactions in non-native contexts. In this study, we explore the promiscuous potential of old yellow enzymes (OYEs) to facilitate the Morita-Baylis-Hillman reaction (MBH reaction), leveraging substrate similarities between MBH reaction and reduction reaction. Using mass spectrometry and spectroscopic techniques, we confirm promiscuity of GkOYE in both MBH and reduction reactions. By blocking H- and H+ transfer pathways, we engineer GkOYE.8, which loses its reduction ability but enhances its MBH activity. The structural basis of MBH reaction catalyzed by GkOYE.8 is obtained through mutation studies and kinetic simulations. Furthermore, enantiocomplementary mutants GkOYE.11 and GkOYE.13 are obtained by directed evolution, exhibiting the ability to accept various aromatic aldehydes and alkenes as substrates. This study demonstrates the potential of leveraging substrate similarities to unlock enzyme functionalities, enabling the catalysis of new-to-nature reactions.


Subject(s)
Biocatalysis , Substrate Specificity , Kinetics , Aldehydes/metabolism , Aldehydes/chemistry , Catalysis , Mutation , Alkenes/metabolism , Alkenes/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Protein Engineering
10.
Sci Total Environ ; 947: 174718, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38997025

ABSTRACT

As ubiquitous chemical substances in water bodies, nitrophenol compounds (NCs) can form chlorinated halonitromethanes (Cl-HNMs) in the chlorination process. This work chose six typical NCs to explore Cl-HNMs produced during the UV/post-chlorination process, and Cl-HNMs yields from these NCs followed the increasing order of 4-, 2-, 2-amino-3-, 2-methyl-3-, 3-, and 2-chloro-3-nitrophenol. The Cl-HNMs yields increased continually or increased firstly and declined with post-chlorination time. Increasing chlorine dosage favored Cl-HNMs formation, while excessive chlorine dosage decreased Cl-HNMs produced from 2- and 4-nitrophenol. Besides, appropriate UV radiation, acidic pH, and higher precursor concentrations facilitated Cl-HNMs formation. Then, the reaction mechanisms of Cl-HNMs generated from these different NCs were explored according to density functional theory calculation and identified transformation products (TPs), and the main reactions included chlorine substitution, benzoquinone compound formation, ring opening, and bond cleavage. Moreover, the Cl-HNMs generated from 2-chloro-3-nitrophenol were of the highest toxicity, and the six NCs and their TPs also presented ecotoxicity. Finally, two kinds of real waters were used to explore Cl-HNMs formation and toxicity, and they were significantly distinguishable compared to the phenomena observed in simulated waters. This work will give new insights into Cl-HNMs formation from different NCs in water disinfection processes and help better apply the UV/post-chlorination process to water treatments.

11.
J Nanobiotechnology ; 22(1): 429, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033109

ABSTRACT

Pazopanib (PAZ), an oral multi-tyrosine kinase inhibitor, demonstrates promising cytostatic activities against various human cancers. However, its clinical utility is limited by substantial side effects and therapeutic resistance. We developed a nanoplatform capable of delivering PAZ for enhanced anti-breast cancer therapy. Nanometer-sized PAZ@Fe-MOF, compared to free PAZ, demonstrated increased anti-tumor therapeutic activities in both syngeneic murine 4T1 and xenograft human MDA-MB-231 breast cancer models. High-throughput single-cell RNA sequencing (scRNAseq) revealed that PAZ@Fe-MOF significantly reduced pro-tumorigenic M2-like macrophage populations at tumor sites and suppressed M2-type signaling pathways, such as ATF6-TGFBR1-SMAD3, as well as chemokines including CCL17, CCL22, and CCL24. PAZ@Fe-MOF reprogramed the inhibitory immune microenvironment and curbed tumorigenicity by blocking the polarization of M2 phenotype macrophages. This platform offers a promising and new strategy for improving the cytotoxicity of PAZ against breast cancers. It provides a method to evaluate the immunological response of tumor cells to PAZ-mediated treatment.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Indazoles , Macrophages , Metal-Organic Frameworks , Nanoparticles , Pyrimidines , Sulfonamides , Animals , Female , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Breast Neoplasms/drug therapy , Humans , Macrophages/drug effects , Indazoles/pharmacology , Indazoles/chemistry , Mice , Pyrimidines/pharmacology , Pyrimidines/chemistry , Cell Line, Tumor , Nanoparticles/chemistry , Sulfonamides/pharmacology , Sulfonamides/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Mice, Inbred BALB C , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays
12.
Eur J Pharmacol ; : 176839, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39033838

ABSTRACT

BACKGROUND: Severe endoplasmic reticulum (ER) stress elicits apoptosis to suppress lung cancer. Our previous research identified that Cepharanthine (CEP), a kind of phytomedicine, possessed powerful anti-cancer efficacy, for which the underlying mechanism was still uncovered. Herein, we investigated how CEP induced ER stress and worked against lung cancer. METHODS: The differential expression genes (DEGs) and enrichment were detected by RNA-sequence. The affinity of CEP and NRF2 was analyzed by cellular thermal shift assay (CETSA) and molecular docking. The function assay of lung cancer cells was measured by western blots, flow cytometry, immunofluorescence staining, and ferroptosis inhibitors. RESULTS: CEP treatment enriched DEGs in ferroptosis and ER stress. Further analysis demonstrated the target was NRF2. In vitro and in vivo experiments showed that CEP induced obvious ferroptosis, as characterized by the elevated iron ions, ROS, COX-2 expression, down-regulation of GPX4, and atrophic mitochondria. Moreover, enhanced Grp78, CHOP, p-eIF2A expression, ß-amyloid mass, and disappearing parallel stacked structures of ER were observed in CEP group, suggesting ER stress was aroused. CEP exhibited excellent anti-lung cancer efficacy, as evidenced by the increased apoptosis, reduced proliferation, diminished cell stemness, and prominent inhibition of tumor grafts in animal models. Furthermore, the addition of ferroptosis inhibitors weakened CEP-induced ER stress and apoptosis. CONCLUSION: In summary, our findings proved CEP drives ferroptosis through inhibition of NRF2 for induction of robust ER stress, thereby leading to apoptosis and attenuated stemness of lung cancer cells. The current work presents a novel mechanism for the anti-tumor efficacy of the natural compound CEP.

13.
Genes Dis ; 11(5): 101039, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38988324

ABSTRACT

N6-methyladenosine (m6A) methylation is one of the most predominant internal RNA modifications in eukaryotes and has become a hot spot in the field of epigenetics in recent years. Cardiovascular diseases (CVDs) are a leading cause of death globally. Emerging evidence demonstrates that RNA modifications, such as the m6A modification, are associated with the development and progression of many diseases, including CVDs. An increasing body of studies has indicated that programmed cell death (PCD) plays a vital role in CVDs. However, the molecular mechanisms underlying m6A modification and PCD in CVDs remain poorly understood. Herein, elaborating on the highly complex connections between the m6A mechanisms and different PCD signaling pathways and clarifying the exact molecular mechanism of m6A modification mediating PCD have significant meaning in developing new strategies for the prevention and therapy of CVDs. There is great potential for clinical application.

14.
Front Oncol ; 14: 1391616, 2024.
Article in English | MEDLINE | ID: mdl-38988706

ABSTRACT

Warthin-like mucoepidermoid carcinoma (WL-MEC) is a newly reported variant of mucoepidermoid carcinoma. Its histological feature is easy to confused with metaplastic Warthin Tumor, and its relationship with Warthin tumor in histogenesis is controversial. In this study, we presented two cases of WL-MEC, discussing their clinicopathological and molecular features. Notably, one case was initially misdiagnosed during the first onset of the tumor. Case 1 was a 60-year-old female with a mass in the right parotid gland. Case 2 featured a 29-year-old male who developed a lump at the original surgical site 6 months after a "Warthin tumor" resection from the submandibular gland. Histologically, both tumor exhibited a prominent lymphoid stroma and cystic pattern, accompanied by various amounts of epithelial nests composed of squamoid cells, intermediate cells and mucinous cells. The characteristic eosinophilic bilayer epithelium of Warthin tumor was not typically presented in either case. Both cases tested positive for MAML2 gene rearrangement. To contextualize our findings, we conducted a comprehensive review of forty-eight WL-MEC cases documented in the English literature, aiming to synthesizing a reliable differential diagnostic approach. WL-MEC is a rare yet clinically relevant variant, posing a diagnostic pitfall for pathologists. Our study underscores the importance of a meticulous evaluation of both clinical and histological features, coupled with the detection of MAML2 rearrangement, as a credible method for distinguishing WL-MEC from other benign and malignant lesions, particularly metaplastic Warthin tumor.

15.
Environ Pollut ; 358: 124486, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972563

ABSTRACT

Chlorinated volatile organic compounds (Cl-VOCs) have dramatically biotoxicity and environmental persistence due to the presence of chlorine atoms, seriously jeopardizing ecological security and human health. Dichloromethane (DCM) as a model pollutant, is widely applied in solvents, extractants and cleaning agents in the pharmaceutical, chemical and food industries. In this study, highly biocompatible and conductive carbon cloth-titanium nitride-polyaniline (CC-TiN-PANI) bioelectrodes were obtained for DCM degradation in microbial electrolysis cell (MEC). The good adhesion of TiN and PANI on the electrode surface was demonstrated. The degradation kinetics were fitted by the Haldane model, compared to the CC bioelectrode (0.8 h-1), the proportion of maximum degradation rates to half-saturation concentration (Vmax/Km) of CC-TiN (1.4 h-1) and CC-TiN-PANI (2.2 h-1) bioelectrodes were enhanced by 1.8 and 2.8 times, respectively. Microbial community structure analysis illuminated that the dominant genera on the biofilm were Alicycliphilus and Hyphomicrobium, and the abundance was enhanced significantly with the modification of TiN and PANI. The dechlorination of DCM to formaldehyde could be catalyzed by DCM dehalogenase (DcmA) or by haloalkane dehalogenase (DhlA). And further oxidized to formate: 1) direct catalyzed by formaldehyde dehydrogenase (FdhA); 2) conjugated with glutathione by S-(hydroxymethyl)-glutathione synthase (Gfa), S-(hydroxymethyl)-glutathione dehydrogenase (FrmA) and S-formyl-glutathione hydrolase (FrmB); 3) conjugation with tetrahydrofolate (H4F) and/or tetrahydromethanopterin.

16.
Article in English | MEDLINE | ID: mdl-38949938

ABSTRACT

DNA N6-methyladenine (6mA) is an important epigenetic modification that plays a vital role in various cellular processes. Accurate identification of the 6mA sites is fundamental to elucidate the biological functions and mechanisms of modification. However, experimental methods for detecting 6mA sites are high-priced and time-consuming. In this study, we propose a novel computational method, called Ense-i6mA, to predict 6mA sites. Firstly, five encoding schemes, i.e., one-hot encoding, gcContent, Z-Curve, K-mer nucleotide frequency, and K-mer nucleotide frequency with gap, are employed to extract DNA sequence features. Secondly, to our knowledge, it is the first time that eXtreme gradient boosting coupled with recursive feature elimination is applied to 6mA sites prediction domain to remove noisy features for avoiding over-fitting, reducing computing time and complexity. Then, the best subset of features is fed into base-classifiers composed of Extra Trees, eXtreme Gradient Boosting, Light Gradient Boosting Machine, and Support Vector Machine. Finally, to minimize generalization errors, the prediction probabilities of the base-classifiers are aggregated by averaging for inferring the final 6mA sites results. We conduct experiments on two species, i.e., Arabidopsis thaliana and Drosophila melanogaster, to compare the performance of Ense-i6mA against the recent 6mA sites prediction methods. The experimental results demonstrate that the proposed Ense-i6mA achieves area under the receiver operating characteristic curve values of 0.967 and 0.968, accuracies of 91.4% and 92.0%, and Mathew's correlation coefficient values of 0.829 and 0.842 on two benchmark datasets, respectively, and outperforms several existing state-of-the-art methods.

17.
J Hazard Mater ; 476: 135032, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38959826

ABSTRACT

There is limited information available on cardiovascular toxicity of 2-Aminobenzothiazole (NTH), a derivative of benzothiazole (BTH) commonly used in tire production, in aquatic organisms. In the present study, the zebrafish embryos were exposed to varying concentrations of NTH (0, 0.05, 0.5, and 5 mg/L) until adulthood and the potential cardiovascular toxicity was assessed. NTH exposure resulted in striking aberrations in cardiac development, including heart looping failure and interference with atrioventricular canal differentiation. RNA-sequencing analysis indicated that NTH causes oxidative damage to the heart via ferroptosis, leading to oxygen supply disruption, cardiac malformation, and ultimately, zebrafish death. Quantitative real-time polymerase chain reaction (qPCR) analysis demonstrated the dysregulation of genes associated with early heart development, contraction, and oxidative stress. Additionally, reactive oxygen species accumulation and glutathione/malondialdehyde levels changes suggested a potential link between cardiac developmental toxicity and oxidative stress. In adult zebrafish, NTH exposure led to ventricular enlargement, decreased heart rate, reduced blood flow, and prolonged RR, QRS, and QTc intervals. To the best of our knowledge, this study is the first to provide evidence of cardiac toxicity and the adverse effects of ontogenetic NTH exposure in zebrafish, revealing the underlying toxic mechanisms connected with oxidative stress damage. These findings may provide crucial insights into the environmental risks associated with NTH and other BTHs.

18.
Int J Gen Med ; 17: 2945-2953, 2024.
Article in English | MEDLINE | ID: mdl-38984071

ABSTRACT

Purpose: Fatigue was a common symptom of non-alcoholic fatty liver disease (NAFLD), which seriously affected patients' quality of life. The aim of this study was to detect fatigue rate and to evaluate factors associated with fatigue in NAFLD patients. Patients and Methods: A cross-sectional study was carried out from the Huadong Sanatorium between April 2022 and May 2023, and 133 NAFLD patients were included in this study. They completed Fatigue Severity Scale to assess fatigue, the Hospital Anxiety and Depression Scale to estimate psychological status, and the Pittsburgh Sleep Quality Index for sleep quality. Data were analyzed by independent samples t-tests, χ2 tests and logistic regression models. Results: We found that 51.1% of NAFLD patients had fatigue. Exercise, anxiety, depression, subjective sleep quality, sleep latency, sleep duration, habitual sleep efficiency, sleep disorders, daytime dysfunction and overall sleep quality were related to fatigue among NAFLD patients. Moreover, logistic regression models indicated anxiety, habitual sleep efficiency and sleep disorders as important predictors of fatigue. Conclusion: This was the first time to explore demographic, clinical, psychological and sleeping correlated factors for fatigue in Chinese NAFLD patients. Our study showed that more than half of NAFLD patients had fatigue, and anxiety, habitual sleep efficiency and sleep disorders were significantly associated with fatigue in NAFLD. The findings indicated that it was very necessary to pay more attention to fatigue of NAFLD patients, especially those with negative emotions and poor sleep quality by favorable intervention to relieve fatigue symptoms, so as to improve quality of life.

19.
J Agric Food Chem ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39036896

ABSTRACT

Anthocyanins are common natural pigments with a variety of physiological activities. Traditional perspectives attribute their molecular mechanism to noncovalent interactions influencing signaling pathways. However, this ignores the nature of its benzopyrylium skeleton, which readily reacts with the electron-rich groups of proteins. Here, we modified cyanidin-3-O-glucoside (C3G) via activity-based protein profiling technology by our previous synthesis route and prepared the covalent binding probe (C3G-Probe) and the noncovalent photoaffinity probe (C3G-Diazirine). The properties of C3G's covalent binding to proteins were also discovered by comparing the labeling of the two probes to the whole HepG2 cell proteome. We further explored its target proteins and enriched pathways in HepG2 and HeLa cells. Western blot analysis further confirmed the covalent binding of C3G to four target proteins: insulin-degrading enzyme, metal cation symporter ZIP14, spermatid perinuclear RNA-binding protein, and Cystatin-B. Pathway analysis showed that covalent targets of C3G were concentrated in metabolic pathways and several ribonucleoprotein complexes that were also coenriched. The results of this study provide new insights into the interaction of the naturally active molecule C3G with proteins.

20.
Autism Res ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925611

ABSTRACT

Autism spectrum disorder (ASD) is a heterogeneous, early-onset neurodevelopmental condition characterized by persistent impairments in social interaction and communication. This study aims to delineate ASD subtypes based on individual gray matter brain networks and provide new insights from a graph theory perspective. In this study, we extracted and normalized single-subject gray matter networks and calculated each network's topological properties. The heterogeneity through discriminative analysis (HYDRA) method was utilized to subtype all patients based on network properties. Next, we explored the differences among ASD subtypes in terms of network properties and clinical measures. Our investigation identified three distinct ASD subtypes. In the case-control study, these subtypes exhibited significant differences, particularly in the precentral gyrus, lingual gyrus, and middle frontal gyrus. In the case analysis, significant differences in global and nodal properties were observed between any two subtypes. Clinically, subtype 1 showed lower VIQ and PIQ compared to subtype 3, but exhibited higher scores in ADOS-Communication and ADOS-Total compared to subtype 2. The results highlight the distinct brain network properties and behaviors among different subtypes of male patients with ASD, providing valuable insights into the neural mechanisms underlying ASD heterogeneity.

SELECTION OF CITATIONS
SEARCH DETAIL