Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
J Sci Food Agric ; 104(5): 3069-3079, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38072654

BACKGROUND: ε-polylysine hydrochloride (ε-PLH) is a naturally occurring antimicrobial peptide extensively utilized in the food and medical industries. However, its impact on animal husbandry remains to be further explored. Therefore, the present study aimed to determine the effect of ε-PLH on laying hens' health and laying performance. RESULTS: Dietary supplementation with ε-PLH to the diet significantly increased average egg weight during weeks 1-8. Meanwhile, compared with the control group, supplementation with ε-PLH decreased the feed egg ratio during weeks 9-12 and egg breakage rate during weeks 9-16 ,whereas it increased eggshell strength during weeks 1-4 and 13-16 . The ε-PLH 0.05% group increased yolk percentage during weeks 5-8 and yolk color during weeks 1-4 . Furthermore, ε-PLH supplementation significantly increased the concentrations of total protein, albumin, globulin and reproductive hormones estradiol, as well as decreased interleukin-1 beta and malondialdehyde in the serum. Compared with the control group, supplementation with 0.05% ε-PLH significantly increased the relative abundance of Cyanobacteria and Gastranaerophilales and decreased the abundance of Desulfovibrio and Streptococcus in the cecum microbiota. In addition, ε-PLH 0.1% supplementation also increased acetic acid content in the cecum. CONCLUSION: Dietary supplementation with ε-PLH has a positive impact on both productive performance and egg quality in laying hens. Furthermore, ε-PLH can also relieve inflammation by promoting the immunity and reducing oxidative damage during egg production. ε-PLH has been shown to improve intestinal morphology, gut microbial diversity and intestinal health. © 2023 Society of Chemical Industry.


Gastrointestinal Microbiome , Animals , Female , Polylysine/pharmacology , Chickens/microbiology , Dietary Supplements/analysis , Diet/veterinary , Fatty Acids, Volatile , Animal Feed/analysis
2.
Lipids Health Dis ; 22(1): 166, 2023 Oct 04.
Article En | MEDLINE | ID: mdl-37794463

BACKGROUND: The criteria for metabolically healthy obesity (MHO) and metabolically unhealthy obesity (MUO) remain controversial. This research aimed to identify a potential biomarker to differentiate the subtypes of obesity. METHODS: The study conducted a lipidomic evaluation of ceramide in the serum of 77 Chinese adults who had undergone hyperinsulinemic-euglycemic clamps. These adults were divided into three groups according to the clinical data: normal weight control group (N = 21), MHO (N = 20), and MUO (N = 36). RESULTS: The serum Cer d18:1/24:1 level in the MHO group was lower than that in the MUO group. As the Cer d18:1/24:1 level increased, insulin sensitivity decreased, and the unfavorable parameters increased in parallel. Multivariate logistic regression analysis revealed that serum Cer d18:1/24:1 levels were independently correlated with MUO in obesity. Individuals with higher levels of Cer d18:1/24:1 also had an elevated risk of cardiovascular disease. Most ceramide subtype levels increased in obesity compared to normal-weight individuals, but the levels of serum Cer d18:0/18:0 and Cer d18:1/16:0 decreased in obesity. CONCLUSIONS: The relationships between ceramide subtypes and metabolic profiles might be heterogeneous in populations with different body weights. Cer d18:1/24:1 could be a biomarker that can be used to differentiate MUO from MHO, and to better predict who will develop unfavorable health outcomes among obese individuals. TRIAL REGISTRATION: The First Affiliated Hospital of Nanjing Medical University's Institutional Review Board authorized this study protocol, and all participants provided written informed consent (2014-SR-003) prior to study entry.


Insulin Resistance , Metabolic Syndrome , Obesity, Metabolically Benign , Adult , Humans , Ceramides , Obesity , Biomarkers , Outcome Assessment, Health Care , Risk Factors , Body Mass Index
3.
Gene ; 879: 147596, 2023 Aug 30.
Article En | MEDLINE | ID: mdl-37390873

Sitosterolemia is a rare autosomal recessive hereditary disease caused by loss-of-function genetic mutations in either ATP-binding cassette subfamily G member 5 or member 8 (ABCG5 or ABCG8). Here, we investigate novel variants in ABCG5 and ABCG8 that are associated with the sitosterolemia phenotype. We describe a 32-year-old woman with hypercholesterolemia, tendon and hip xanthomas, autoimmune hemolytic anemia and macrothrombocytopenia from early life, which make us highly suspicious of the possibility of sitosterolemia. A novel homozygous variant in ABCG5 (c.1769C>A, p.S590X) was identified by genomic sequencing. We also examined the lipid profile, especially plant sterols levels, using gas chromatography-mass spectrometry. Functional studies, including western blotting and immunofluorescence staining, showed that the nonsense mutation ABCG5 1769C>A hinders the formation of ABCG5 and ABCG8 heterodimers and the function of transporting sterols. Our study expands the knowledge of variants in sitosterolemia and provides diagnosis and treatment recommendations.


Hypercholesterolemia , Lipid Metabolism, Inborn Errors , Phytosterols , Thrombocytopenia , Female , Humans , Adult , Hypercholesterolemia/genetics , Hypercholesterolemia/complications , Lipoproteins/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , Phytosterols/adverse effects , Phytosterols/genetics , Lipid Metabolism, Inborn Errors/genetics , Lipid Metabolism, Inborn Errors/complications , Lipid Metabolism, Inborn Errors/diagnosis , Mutation , Thrombocytopenia/genetics
4.
Poult Sci ; 101(12): 102193, 2022 Dec.
Article En | MEDLINE | ID: mdl-36257072

Light is a factor affecting muscle development and meat quality in poultry production. However, few studies have reported on the role of light in muscle development and meat quality in geese. In this experiment, 10 healthy 220-day-old Zhedong white geese were reared for 60 d under a long photoperiod (15L:9D, LL) and short photoperiod (9L:15D, SL). The gastrocnemius muscles were collected after slaughter to evaluate muscle fiber characteristics and meat color, and RNA-seq analysis. The results showed that compared to the LL group, the SL group had large muscle fiber diameter and cross-sectional area, few muscle fibers per unit area, high meat color a* value, and low L* value at 24 h postmortem. On comparing the 2 groups, 70 differentially expressed genes (DEGs) were identified. Compared to the SL group, the LL group had 25 upregulated and 45 downregulated genes. Gene Ontology (GO) enrichment analysis showed that these DEGs were mainly involved in cell, cell part, binding, cellular processes, and single-organism processes. Several significantly enriched athways were identified in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, such as the calcium and PI3k-Akt signaling pathways. The expression of five randomly selected DEGs was verified using quantitative real-time PCR, and the results were consistent with the RNA-seq data. This study provides a theoretical basis for studying the molecular mechanisms by which light affects muscle development and meat color in geese.


Geese , Gene Expression Profiling , Animals , Geese/genetics , Gene Expression Profiling/veterinary , Photoperiod , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Chickens/genetics , Muscle, Skeletal/metabolism
5.
Animals (Basel) ; 12(17)2022 Sep 02.
Article En | MEDLINE | ID: mdl-36077994

Recently, miR-22 has been suggested to be an important microRNA (miRNA) affecting meat quality. Studies have shown that muscle fatty acid composition and mitochondrial function are closely related to meat quality. The regulatory mechanism of miR-22 on skeletal muscle fatty acid composition and mitochondrial function is not well characterized. Therefore, we aimed to explore the effects of miR-22 on fatty acid composition and mitochondrial function in C2C12 cells. Here, it demonstrate that elevated expression of miR-22 significantly repressed fatty acid elongation and mitochondrial morphology in C2C12 myoblasts, while the knockdown of miR-22 showed opposite results. Furthermore, miR-22 targets the elongase of very long chain fatty acids 6 (ELOVL6) and represses its expression in muscle cells. Knockdown of ELOVL6 mimicked the effect of miR-22 on fatty acid composition and mitochondrial function, while overexpression of ELOVL6 restored the effects of miR-22. These findings indicate that miR-22 downregulates the elongation of fatty acids and mitochondrial morphology by inhibiting ELOVL6 expression in muscle cells, which may provide some useful information for controlling muscle lipid accumulation and mitochondrial function in livestock in the future.

6.
Adv Exp Med Biol ; 1372: 189-213, 2022.
Article En | MEDLINE | ID: mdl-35503182

Sphingolipidoses is a cluster of genetic rare disorders regarding glycosphingolipid metabolism, classified as lysosomal storage disorders (LSD). Here, we focus on eight inheritable diseases, including GM1 gangliosidosis, GM2 gangliosidosis, Fabry disease, Gaucher's disease, metachromatic leukodystrophy, Krabbe disease, Niemann-Pick disease A and B, and Farber disease. Mostly, pathogenic mutations in the key enzyme are loss-function, resulting in accumulation of substrates and deficiency of products. Thus, cellular overload of substrates causes lipotoxicity, which is deleterious to cellular and organ function. In the terms of clinical manifestations in sphingolipidoses, multiple systems and organs, especially central nervous system (CNS) are usually affected. As for diagnosis strategy, enzymatic activity assay and genetic sequencing are helpful. Up till now, limited treatment approaches have approved for treating sphingolipidoses, with some potential strategies for further evaluation. In general, enzyme replacement therapy (ERT), substrate reduction therapy (SRT), and molecular chaperones are feasible choices for enzyme deficiency disorders, but these therapies are limited to relieve CNS lesions and symptoms due to prevention from blood-brain barrier. Other possible treatments such as gene therapy, bone marrow transplantation (BMT), and hematopoietic stem cell transplantation (HSCT) need further evaluation.


Fabry Disease , Lysosomal Storage Diseases , Sphingolipidoses , Glycosphingolipids , Humans , Lysosomal Storage Diseases/metabolism , Rare Diseases/diagnosis , Rare Diseases/genetics , Rare Diseases/therapy , Sphingolipidoses/diagnosis , Sphingolipidoses/genetics , Sphingolipidoses/metabolism
7.
Poult Sci ; 101(5): 101805, 2022 May.
Article En | MEDLINE | ID: mdl-35344765

Phosphoglycerate dehydrogenase (PHGDH) is the rate-limiting enzyme in the serine synthesis pathway. However, the regulatory role of PHGDH in muscle development is unclear. We report that the expression of PHGDH increased significantly during proliferation of chicken skeletal muscle satellite cells. Knockdown of PHGDH by an siRNA suppressed myoblast proliferation, whereas overexpression of PHGDH enhanced muscle cell proliferation. Furthermore, PHGDH promoted the expression of Forkhead box protein M1 (FoxM1). Knockdown of FoxM1 by an siRNA attenuated the proliferation of chicken muscle cells, whereas its overexpression significantly promoted proliferation. Additionally, siRNA-PHGDH inhibited pcDNA3.1-FoxM1-induced FoxM1 expression in chicken muscle cells. Moreover, PHGDH inhibition overcame the stimulation by pcDNA3.1-FoxM1 of cell cycle-related gene expression. We propose that PHGDH accelerates chicken muscle cell proliferation by increasing FoxM1 expression.


Chickens , Phosphoglycerate Dehydrogenase , Animals , Cell Line, Tumor , Cell Proliferation , Chickens/genetics , Chickens/metabolism , Muscle Cells , Muscles/metabolism , Phosphoglycerate Dehydrogenase/genetics , Phosphoglycerate Dehydrogenase/metabolism , RNA, Small Interfering
8.
Diabetes Care ; 45(2): 425-435, 2022 02 01.
Article En | MEDLINE | ID: mdl-34880066

OBJECTIVE: To investigate the roles of insulin clearance and insulin secretion in the development of hyperinsulinemia in obese subjects and to reveal the association between insulin clearance and bile acids (BAs). RESEARCH DESIGN AND METHODS: In cohort 1, insulin secretion, sensitivity, and endogenous insulin clearance were evaluated with an oral glucose tolerance test in 460 recruited participants. In cohort 2, 81 participants underwent an intravenous glucose tolerance test and a hyperinsulinemic-euglycemic clamp to assess insulin secretion, endogenous and exogenous insulin clearance, and insulin sensitivity. Based on insulin resistance levels ranging from mild to severe, obese participants without diabetes were further divided into 10 quantiles in cohort 1 and into tertiles in cohort 2. Forty serum BAs were measured in cohort 2 to examine the association between BAs and insulin clearance. RESULTS: All obese participants had impaired insulin clearance, and it worsened with additional insulin resistance in obese subjects without diabetes. However, insulin secretion was unchanged from quantile 1 to 3 in cohort 1, and no difference was found in cohort 2. After adjustments for all confounding factors, serum-conjugated BAs, especially glycodeoxycholic acid (GDCA; ß = -0.335, P = 0.004) and taurodeoxycholic acid (TDCA; ß = -0.333, P = 0.003), were negatively correlated with insulin clearance. The ratio of unconjugated to conjugated BAs (ß = 0.335, P = 0.002) was positively correlated with insulin clearance. CONCLUSIONS: Hyperinsulinemia in obese subjects might be primarily induced by decreased insulin clearance rather than increased insulin secretion. Changes in circulating conjugated BAs, especially GDCA and TDCA, might play an important role in regulating insulin clearance.


Hyperinsulinism , Insulin Resistance , Bile Acids and Salts , Glucose Clamp Technique , Humans , Insulin , Insulin Resistance/physiology , Obesity/complications
...