Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Ecotoxicol Environ Saf ; 280: 116562, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38850704

ABSTRACT

Diquat dibromide (DQ) is a globally used herbicide in agriculture, and its overuse poses an important public health issue, including male reproductive toxicity in mammals. However, the effects and molecular mechanisms of DQ on testes are limited. In vivo experiments, mice were intraperitoneally injected with 8 or 10 mg/kg/ day of DQ for 28 days. It has been found that heme oxygenase-1 (HO-1) mediates DQ-induced ferroptosis in mouse spermatogonia, thereby damaging testicular development and spermatogenesis. Histopathologically, we found that DQ exposure caused seminiferous tubule disorders, reduced germ cells, and increased sperm malformation, in mice. Reactive oxygen species (ROS) staining of frozen section and transmission electron microscopy (TEM) displayed DQ promoted ROS generation and mitochondrial morphology alterations in mouse testes, suggesting that DQ treatment induced testicular oxidative stress. Subsequent RNA-sequencing further showed that DQ treatment might trigger ferroptosis pathway, attributed to disturbed glutathione metabolism and iron homeostasis in spermatogonia cells in vitro. Consistently, results of western blotting, measurements of MDA and ferrous iron, and ROS staining confirmed that DQ increased oxidative stress and lipid peroxidation, and accelerated ferrous iron accumulation both in vitro and in vivo. Moreover, inhibition of ferroptosis by deferoxamine (DFO) markedly ameliorated DQ-induced cell death and dysfunction. By RNA-sequencing, we found that the expression of HO-1 was significantly upregulated in DQ-treated spermatogonia, while ZnPP (a specific inhibitor of HO-1) blocked spermatogonia ferroptosis by balancing intracellular iron homeostasis. In mice, administration of the ferroptosis inhibitor ferrostatin-1 effectively restored the increase of HO-1 levels in the spermatogonia, prevented spermatogonia death, and alleviated the spermatogenesis disorders induced by DQ. Overall, these findings suggest that HO-1 mediates DQ-induced spermatogonia ferroptosis in mouse testes, and targeting HO-1 may be an effective protective strategy against male reproductive disorders induced by pesticides in agriculture.


Subject(s)
Diquat , Ferroptosis , Heme Oxygenase-1 , Herbicides , Reactive Oxygen Species , Spermatogonia , Testis , Animals , Male , Ferroptosis/drug effects , Mice , Spermatogonia/drug effects , Spermatogonia/pathology , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Testis/drug effects , Testis/pathology , Diquat/toxicity , Herbicides/toxicity , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Spermatogenesis/drug effects , Membrane Proteins
3.
Free Radic Biol Med ; 200: 26-35, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36893944

ABSTRACT

Nicotine has shown the toxic effects on male reproductive system, and testicular damage is associated with ferroptosis, which is a non-apoptotic regulated cell death driven by iron-dependent lipid peroxidation. However, the role of nicotine on ferroptosis of testicular cells is largely elusive. In the present study, we showed that nicotine destroyed blood-testis barrier (BTB) by interfering with the circadian rhythm of BTB-related factors (ZO-1, N-Cad, Occludin and CX-43) and induced ferroptosis, as reflected via increased clock-control levels of lipid peroxide and decreased ferritin and GPX4, which involved in the circadian. Inhibition of ferroptosis with Fer-1 alleviated nicotine-induced injury of BTB and impaired sperm in vivo. Mechanically, we uncover that the core molecular clock protein, Bmal1, regulates the expression of Nrf2 via direct E-box binding to its promoter to regulate its activity, and nicotine decreases the transcription of Nrf2 through Bmal1 and inactivates Nrf2 pathway and its downstream antioxidant gene, which leads to the imbalance of redox state and ROS accumulation. Intriguingly, nicotine induced lipid peroxidation and subsequent ferroptosis by Bmal1-mediated Nrf2. In conclusion, our study reveals a clear role for the molecular clock in controlling Nrf2 in testis to mediate the ferroptosis induced by nicotine. These findings provide a potential mechanism to prevent smoking and/or cigarette smoke-induced male reproductive injury.


Subject(s)
Ferroptosis , Antioxidants/pharmacology , Ferroptosis/genetics , Iron/metabolism , NF-E2-Related Factor 2/metabolism , Nicotine/toxicity , Seeds/metabolism , Male , Animals , Mice
4.
Toxics ; 11(2)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36851035

ABSTRACT

Diquat is a fast, potent, and widely used bipyridine herbicide in agriculture and it induces oxidative stress in several animal models. However, its genotoxic effects on the male reproductive system remain unclear. Melatonin is an effective free-radical scavenger, which has antioxidant and anti-apoptotic properties and can protect the testes against oxidative damage. This study aimed to investigate the therapeutic effects of melatonin on diquat-induced testicular injury in mice. The results showed melatonin treatment alleviated diquat-induced testicular injury, including inhibited spermatogenesis, increased sperm malformations, declined testosterone level and decreased fertility. Specifically, melatonin therapy countered diquat-induced oxidative stress by increasing production of the antioxidant enzymes GPX1 and SOD1. Melatonin treatment also attenuated diquat-induced spermatogonia apoptosis in vivo and in vitro by modulating the expression of apoptosis-related proteins, including P53, Cleaved-Caspase3, and Bax/Bcl2. Moreover, melatonin restored the blood-testicular barrier by promoting the expression of Sertoli cell junction proteins and maintaining the ordered distribution of ZO-1. These findings indicate that melatonin protects the testes against diquat-induced damage by reducing oxidative stress, inhibiting apoptosis, and maintaining the integrity of the blood-testis barrier in mice. This study provides a theoretical basis for further research to protect male reproductive health from agricultural pesticides.

5.
J Anim Sci Biotechnol ; 14(1): 22, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36732843

ABSTRACT

BACKGROUND: Zearalenone (ZEA) widely exists in moldy grains, which seriously destroys the fertility of females. Isorhamnetin, a natural flavonoid, has extensive of pharmacological activities. However, the beneficial effect and the underlying molecular mechanism of isorhamnetin involvement in ZEA-induced porcine oocyte damage have not been investigated. METHODS: Oocytes were treated with different concentrations of ZEA (3, 5, 8 and 10 µmol/L) and isorhamnetin (5, 10, 20 and 30 µmol/L) for 44 h at 39 â„ƒ. ZEA (5 µmol/L) and isorhamnetin (10 µmol/L) were selected for subsequent studies. Polar body exclusion rate, apoptosis rate and apoptosis related proteins, ROS levels and SOD2 protein, mitochondrial membrane potential and distribution, endoplasmic reticulum distribution and proteins expression, and PI3K, Akt and p-Akt proteins expression of oocytes were detected. In addition, the effect of PI3K antagonist (LY294002) on oocyte nuclear maturation and apoptosis were used to determine the involvement of PI3K/Akt signaling pathway. RESULTS: Our findings showed that ZEA exposure damaged oocytes and isorhamnetin therapy restored the developmental capability of porcine oocytes. Isorhamnetin promoted polar body extrusion rate to rescue ZEA-induced meiotic arrest in porcine oocytes. Isorhamnetin alleviated ZEA-induced oxidative stress by stimulating SOD2 protein expression and inhibiting ROS production. Moreover, isorhamnetin enhanced normal mitochondrial distribution and mitochondrial membrane potential to prevent mitochondrial dysfunction induced by ZEA. Changing the expression of endoplasmic reticulum stress-related marker proteins (CHOP, GRP78) and the distribution rate of normal endoplasmic reticulum showed that isorhamnetin relieved ZEA-caused endoplasmic reticulum stress. Mechanistically, isorhamnetin decreased Bax/Bcl-2 protein expression and inhibited ZEA-induced apoptosis through PI3K/Akt signaling pathway. CONCLUSIONS: Collectively, these results suggest that isorhamnetin protects oocytes from ZEA-caused damage through PI3K/Akt signaling pathway, which enhances meiotic maturation and mitochondrial function, and inhibits early apoptosis, oxidative stress and endoplasmic reticulum stress in porcine oocytes. Our study provides a new strategy for solving the reproductive toxicity induced by ZEA and treating woman infertility. A possible mechanism by which isorhamnetin protected porcine oocytes from ZEA-induced damage. Isorhamnetin inhibited meiosis arrest and apoptosis of porcine oocytes induced by ZEA through the PI3K/Akt signaling pathway. Moreover, isorhamnetin repaired ZEA-induced oocyte damage by alleviating oxidative stress, mitochondrial dysfunction and ER stress.

6.
Anim Nutr ; 11: 381-390, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36329687

ABSTRACT

Zearalenone (ZEA) is widely derived from moldy cereal grain, which has adverse effects on animal reproduction. In particular, pigs are more sensitive to ZEA-induced toxicity than other animals. Isorhamnetin has extensive pharmacological activity. However, the role of isorhamnetin in ZEA-induced cytotoxicity remains unclear. This study was designed to investigate the therapeutic effect of isorhamnetin on ZEA-induced damage in porcine ovarian granulosa cells and elucidate its molecular mechanism. Two experiments were conducted, where a minimum of 3 biological replicates were used for each treatment. In Exp. 1, ovarian granulosa cells were treated with different concentrations of isorhamnetin (1, 5, 10, 20 and 30 µmol/L) and ZEA (0, 10, 30, 60, 90 and 120 µmol/L) for 24 h. Our results indicated that 60 µmol/L ZEA (half-maximal inhibitory concentration value) and 20 µmol/L isorhamnetin (the most effective concentration against ZEA-induced cytotoxicity) were optimum concentrations. In Exp. 2, ovarian granulosa cells were treated with isorhamnetin (20 µmol/L) for 2 h, before treatment with ZEA (60 µmol/L) for 24 h. Apoptosis, endoplasmic reticulum stress, oxidative stress, proliferation and hormone secretion of ovarian granulosa cells were detected. Our findings showed that isorhamnetin suppressed (P < 0.05) ZEA-induced apoptosis by altering mitochondrial membrane potential and apoptosis-related proteins (B-cell lymphoma-2 [Bcl-2], Bcl2-associated x [Bax] and cleaved caspase-3 [C-Casp3]). Changes in intracellular Ca2+ levels and C/EBP homologous protein (CHOP), recombinant activating transcription factor 6 (ATF6), glucose regulated protein78 kD (GRP78) indicated that isorhamnetin rescued (P < 0.05) ZEA-induced endoplasmic reticulum stress. Furthermore, isorhamnetin prevented (P < 0.05) ZEA-induced oxidative stress via the mitogen-activated protein kinase (P38) signaling pathway. Mechanistically, isorhamnetin stimulated (P < 0.05) the expression of proliferating cell nuclear antigen (PCNA) and cyclin D, thereby increasing the ratio of S phase cells in response to ZEA-induced apoptosis via phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) signaling pathway. Isorhamnetin also recovered (P < 0.05) ZEA-induced steroidogenesis disorder by regulating steroidogenic enzyme gene and proteins (follicle-stimulating hormone receptor [FSHR] and cytochrome P450 family 19 subfamily a member 1 [CYP19A1]). Collectively, these findings show that isorhamnetin protects ovarian granulosa cells from ZEA-induced damage, which promotes proliferation, alleviates apoptosis, endoplasmic reticulum stress, oxidative stress, and steroidogenesis disorder.

7.
J Agric Food Chem ; 69(23): 6535-6542, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34096286

ABSTRACT

Isorhamnetin is a natural flavonoid widely distributed in fruits and vegetables. However, the roles of isorhamnetin involved in steroidogenesis, proliferation, and apoptosis in ovarian granulosa cells (GCs) are poorly understood. We found that isorhamnetin promoted the secretion of estrogen and inhibited the secretion of progesterone and testosterone by modulating steroidogenesis-associated proteins and mRNA such as CYP19A1, StAR, and 3ß-HSD in ovarian GCs. Mechanistically, isorhamnetin stimulated the expression of the proliferating cell nuclear antigen and C-myc and promoted the proliferation of GCs via the PI3K/Akt signaling pathway. Furthermore, isorhamnetin increased the protein expression of CyclinB, CyclinD, CyclinE, and CyclinA, thereby raising the ratio of S-phase cells in response to GC proliferation. Changes in the expression of apoptosis-associated proteins (Bcl2, Bax, and cytochrome c) and intracellular reactive oxygen species levels showed that isorhamnetin inhibited GC apoptosis. Collectively, these findings indicate that isorhamnetin regulates steroidogenesis through the activation of PI3K/Akt, which promotes proliferation, inhibits apoptosis, and alleviates oxidative stress.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Animals , Apoptosis , Cell Proliferation , Estrogens , Female , Granulosa Cells/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Progesterone , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Quercetin/analogs & derivatives , Signal Transduction , Swine
8.
J Agric Food Chem ; 69(9): 2793-2804, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33645971

ABSTRACT

An animal mammary bioreactor is regarded as an excellent biological system which is applied to produce large-scale recombinant proteins in milk. However, there are no effective methods to produce a large amount of some pharmaceutical proteins, such as human follicle-stimulating hormone (FSH), by large animal mammary gland bioreactors due to the fact that accumulation of excessive bioactive FSH might cause serious diseases in animals. Here, we report a novel strategy of preparing recombinant human FSH (rhFSH) from goat mammary glands, which could avoid the accumulation of bioactive FSH in goats. First, the single inactive FSHα and FSHß subunits expressed in goat mammary epithelial cells and goat mammary glands were performed to reassemble in vitro and were found to self-assemble into a complete heterodimer rhFSH at 4 °C and pH 7.4. Further, a cyclic adenosine monophosphate (cAMP) induction assay showed that the cAMP levels in cell lysate of HEK 293/FSHR cells were increased by about 8-fold in reassembled rhFSH groups than that in the control group (P < 0.01). Pharmacokinetic analysis indicated that the reassembled rhFSH from goat mammary glands was comparable to that of the commercially available Gonal-F (P > 0.05). In addition, the increasing dose of reassembled rhFSH significantly promoted ovulation of mouse and ovary weight gain of Sprague Dawley rat compared with the control groups and maximum values were up to 3-fold (P < 0.01) and 2.8-fold (P < 0.01), respectively. The reassembled rhFSH showed a similar effect to Gonal-F in inducing expression of FSH target genes in vivo and activating the PI3K pathway in granulosa cells. Our study developed a novel method to produce rhFSH and provided the basis for preparing FSH by the goat mammary gland bioreactor with less health problems on the producing animals.


Subject(s)
Follicle Stimulating Hormone, Human/biosynthesis , Goats , Milk , Animals , Female , HEK293 Cells , Humans , Mice , Phosphatidylinositol 3-Kinases , Rats , Rats, Sprague-Dawley , Recombinant Proteins/biosynthesis
9.
J Steroid Biochem Mol Biol ; 209: 105826, 2021 05.
Article in English | MEDLINE | ID: mdl-33581253

ABSTRACT

OBJECTIVES: Estrogen plays a critical role in the development and apoptosis of oocytes. Autophagy is an evolutionarily conserved and exquisitely regulated self-eating cellular process with important biological functions including the regulation of reproduction. This study aimed to determine the effect of autophagy regulated by the biologically active form of estrogen (17ß-estradiol) in porcine oocyte maturation in vitro. MATERIALS AND METHODS: We measured the effects of oocyte developmental competencies and autophagic activity in the porcine oocyte regulated by 17ß-estradiol using autophagic inhibitor (Autophinib). In addition, we studied the role of autophagy in reactive oxygen species (ROS) levels, mitochondrial distribution, Ca2+ production, mitochondrial membrane potential (ΔΨm), and early apoptosis by caspase-3, -8 activity in the mature oocytes. RESULTS: The results showed that the oocyte meiotic progression and early embryonic development were gradually decreased with Autophinib treatment, which was improved by 17ß-estradiol. Immunofluorescence experiments revealed that 17ß-estradiol primarily could promote the autophagy in the mature oocytes, and block the reduced-autophagic events by Autophinib. Moreover, 17ß-estradiol improved the Autophinib induced high ROS levels, abnormal mitochondrial distribution and low Ca2+ production in mature oocytes. Analyses of early apoptosis and ΔΨm showed that autophagy inhibition was accompanied by increased cellular apoptosis, and 17ß-estradiol reduced apoptosis rates of mature oocytes. Importantly, autophagy was downregulated by treatment with Autophinib, an activation of caspase-8 and cleaved caspase-3 increased. Those effects were abolished by 17ß-estradiol, which could upregulate autophagy. CONCLUSIONS: Our study have showed important implications that 17ß-estradiol could promote efficacy of the development of porcine oocytes, enhance the autophagy, reduce ROS levels and apoptosis activity in vitro maturation.


Subject(s)
Apoptosis , Autophagy , Estradiol/pharmacology , In Vitro Oocyte Maturation Techniques , Oocytes/cytology , Oogenesis , Reactive Oxygen Species/metabolism , Animals , Embryonic Development , Estrogens/pharmacology , Female , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Oocytes/drug effects , Oocytes/metabolism , Pregnancy , Swine
10.
Mol Cell Endocrinol ; 526: 111211, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33582214

ABSTRACT

Follicle stimulating hormone (FSH), composed of FSHα and FSHß subunits, is essential for female follicle development and male spermatogenesis. The recombinant human FSH (rhFSH) products on the market are mainly generated from mammalian cells and are expensive. Large animal mammary gland bioreactors are urgently needed to produce large amounts of rhFSH. However, there are currently no effective methods to prepare rhFSH by large animals mainly due to the fact that excessive accumulation of FSH might cause many adverse effects in animals. We herein report the development and characterization of functional self-assembled rhFSH produced in goat mammary epithelial cells (GMECs). FSHα and FSHß stably expressed in Chinese hamster ovary (CHO) cell lines were secreted into culture medium and well glycosylated. Importantly, FSHα and FSHß expressed apart were able to assemble into functional FSH. We next inserted human FSHα or FSHß gene separately into goat ß-Lactoglobulin locus in GMECs by CRISPR/Cas9. Inactive FSHα and FSHß subunits expressed from GMECs assembled into rhFSH as analyzed by His-tag pull down assay. Functional assessment of rhFSH by cAMP induction assay, mouse ovulation induction and rat ovarian weight gain experiments showed that the bioactivity of self-assembled rhFSH expressed by GMECs was comparable to that of Gonal-F both in vitro and in vivo. Our study demonstrated that FSHα and FSHß can be separately expressed and assembled into functional rhFSH, and provided the basis for future preparing FSH by goat mammary gland bioreactor with less health problems on the producing animals.


Subject(s)
Epithelial Cells/metabolism , Follicle Stimulating Hormone, beta Subunit/biosynthesis , Glycoprotein Hormones, alpha Subunit/biosynthesis , Goats/physiology , Mammary Glands, Animal/cytology , Recombinant Proteins/biosynthesis , Animals , Aromatase/genetics , Aromatase/metabolism , Base Sequence , CHO Cells , CRISPR-Cas Systems/genetics , Cricetulus , Cyclic AMP/metabolism , Endocytosis/drug effects , Epithelial Cells/drug effects , Estradiol/blood , Female , Follicle Stimulating Hormone, beta Subunit/pharmacology , Gene Expression Regulation/drug effects , Glycoprotein Hormones, alpha Subunit/pharmacology , Glycosylation , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Lactoglobulins/genetics , Ligands , Mice , N-Acetylneuraminic Acid/metabolism , Ovulation/drug effects , Protein Subunits/pharmacology , RNA, Guide, Kinetoplastida/metabolism , Rats , Recombinant Proteins/pharmacology , Weight Gain/drug effects
11.
J Pineal Res ; 69(4): e12690, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32761924

ABSTRACT

Palmitic acid (PA), the main component of dietary saturated fat, has been known to increase in patients with obesity, and PA-induced lipotoxicity may contribute to obesity-related male infertility. Melatonin has beneficial effects on reproductive processes; however, the effect and the underlying molecular mechanism of melatonin's involvement in PA-induced cytotoxicity in the testes are poorly understood. Our findings showed that lipotoxicity was observed in mouse testes after long-term PA treatment and that melatonin therapy restored spermatogenesis and fertility in these males. Moreover, melatonin therapy suppressed PA-induced apoptosis by modulating apoptosis-associated proteins such as Bcl2, Bax, C-Caspase3, C-Caspase12, and CHOP in type B spermatogonial stem cells. Changes in the expression of endoplasmic reticulum (ER) stress markers (p-IRE1, p-PERK, ATF4) and intracellular Ca2+ levels showed that melatonin relieved PA-induced ER stress. Mechanistically, melatonin stimulated the expression and nuclear translocation of SIRT1 through its receptors and prevented PA-induced ROS production and mitochondrial dysfunction via SIRT1 signaling pathway. Furthermore, melatonin promoted SIRT1-mediated p53 deacetylation, thereby relieving G2/M arrest in response to PA-stimulated DNA damage. Collectively, these findings indicate that melatonin protects the testes from PA-induced lipotoxicity through the activation of SIRT1, which alleviates oxidative stress, ER stress, mitochondrial dysfunction, and DNA damage.


Subject(s)
Apoptosis/drug effects , DNA Damage , Endoplasmic Reticulum Stress/drug effects , Melatonin/pharmacology , Oxidative Stress/drug effects , Palmitic Acid/toxicity , Sirtuin 1/metabolism , Animals , Male , Mice
12.
J Ovarian Res ; 12(1): 90, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31554511

ABSTRACT

Phospholipase C (PLC) can participate in cell proliferation, differentiation and aging. However, whether it has a function in apoptosis in porcine primary granulosa cells is largely uncertain. The objective of this study was to examine the effects of PLC on apoptosis of porcine primary granulosa cells cultured in vitro. The mRNA expression of BAK, BAX and CASP3, were upregulated in the cells treated with U73122 (the PLC inhibitor). The abundance of BCL2 mRNA, was upregulated, while BAX and CASP3 mRNA expression was decreased after treatment with m-3M3FBS (the PLC activator). Both the early and late apoptosis rate were maximized with 0.5 µM U73122 for 4 h. The rate of early apoptosis was the highest at 4 h and the rate of late apoptosis was the highest at 12 h in the m-3M3FBS group. The protein abundance of PLCß1, protein kinase C ß (PKCß), calmodulin-dependent protein kinaseII α (CAMKIIα) and calcineurinA (CalnA) were decreased by U73122, and CAMKIIα protein abundance was increased by m-3M3FBS. The mRNA expression of several downstream genes (CDC42, NFATc1, and NFκB) was upregulated by PLC. Our results demonstrated that apoptosis can be inhibited by altering PLC signaling in porcine primary granulosa cells cultured in vitro, and several calcium-sensitive targets and several downstream genes might take part in the processes.


Subject(s)
Apoptosis/drug effects , Cell Proliferation/drug effects , Granulosa Cells/metabolism , Type C Phospholipases/genetics , Animals , Apoptosis/genetics , Calcineurin/genetics , Calcium/metabolism , Caspase 3/genetics , Cell Proliferation/genetics , Estrenes/pharmacology , Female , Gene Expression Regulation/drug effects , Granulosa Cells/drug effects , Granulosa Cells/pathology , Phospholipase C beta/genetics , Phosphoprotein Phosphatases/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Pyrrolidinones/pharmacology , Signal Transduction/drug effects , Sulfonamides/pharmacology , Swine , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-2-Associated X Protein/genetics
13.
Int J Mol Sci ; 20(6)2019 Mar 18.
Article in English | MEDLINE | ID: mdl-30889926

ABSTRACT

SIRT2, a member of the sirtuin family, has been recently shown to exert important effects on mitosis and/or metabolism. However, its roles in oocyte maturation have not been fully clarified. In this study, SIRT2, located in the cytoplasm and nucleus, was found in abundance in the meiotic stage, and its expression gradually decreased until the blastocyst stage. Treatment with SIRT2 inhibitors resulted in the prevention of oocyte maturation and the formation of poor-quality oocytes. By performing confocal scanning and quantitative analysis, the results showed that SIRT2 inhibition induced prominent defects in spindle/chromosome morphology, and led to the hyperacetylation of α-tubulin and H4K16. In particular, SIRT2 inhibition impeded cytoplasmic maturation by disturbing the normal distribution of cortical granules, endoplasmic reticulum, and mitochondria during oocyte meiosis. Meanwhile, exposure to SirReal2 led to elevated intracellular reactive oxygen species (ROS) accumulation, low ATP production, and reduced mitochondrial membrane potential in oocytes. Further analysis revealed that SIRT2 inhibition modulated mitochondrial biogenesis and dynamics via the downregulation of TFAM and Mfn2, and the upregulation of DRP1. Mechanistically, SIRT2 inhibition blocked the nuclear translocation of FoxO3a by increasing FoxO3a acetylation, thereby downregulating the expression of FoxO3a-dependent antioxidant genes SOD2 and Cat. These results provide insights into the potential mechanisms by which SIRT2-dependent deacetylation activity exerts its effects on oocyte quality.


Subject(s)
Cell Cycle Checkpoints , Homeostasis , In Vitro Oocyte Maturation Techniques , Meiosis , Mitochondria/pathology , Oocytes/cytology , Oocytes/metabolism , Sirtuin 2/metabolism , Animals , Catalase/metabolism , Cattle , Chromosomes, Mammalian/genetics , Cytoplasm/metabolism , Female , Forkhead Transcription Factors/metabolism , Mitochondrial Dynamics , Organelle Biogenesis , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Signal Transduction , Superoxide Dismutase/metabolism
14.
Reprod Domest Anim ; 54(5): 741-749, 2019 May.
Article in English | MEDLINE | ID: mdl-30785650

ABSTRACT

Steroid hormones are required for normal reproductive function of female. The aim of this study was to investigate the role of Raf-ERK1/2 on steroid hormone synthesis in bovine ovarian granulosa cells. Immunohistochemistry assay showed that both B-Raf and C-Raf were expressed in granulosa cells, theca cells and Sertoli cells. The protein expression of Raf or ERK1/2 was clearly decreased by Raf inhibitor GSK2118436 or ERK1/2 inhibitor SCH772984, respectively (p < 0.05). In addition, western blotting was performed for investigating the crosstalk between Raf and ERK1/2, the data showed that Raf positively regulated ERK1/2, whereas ERK1/2 had a negative feedback effect on Raf. The biosynthesis of oestradiol or testosterone was significantly decreased by treatment with GSK2118436 or SCH772984 (p < 0.05). Conversely, the progesterone biosynthesis was clearly increased by treatment with those inhibitors (p < 0.05). Furthermore, the mRNA expression of STAR, aromatase and CYP17 was blocked by Raf-ERK1/2 signalling inhibition, which oppositely induced the mRNA expression of CYP11. Together, these findings suggested that Raf-ERK1/2 signalling pathways mediate steroid hormone synthesis via affecting the expression of steroidogenic enzymes.


Subject(s)
Estradiol/biosynthesis , Granulosa Cells/metabolism , MAP Kinase Signaling System , Progesterone/biosynthesis , Testosterone/biosynthesis , Animals , Cattle , Cells, Cultured , Female , Gene Expression , Granulosa Cells/drug effects , Imidazoles/pharmacology , Indazoles/pharmacology , Oximes/pharmacology , Piperazines/pharmacology , RNA, Messenger/genetics
15.
J Steroid Biochem Mol Biol ; 185: 27-38, 2019 01.
Article in English | MEDLINE | ID: mdl-30009951

ABSTRACT

SIRT2 has been shown to possess NAD+-dependent deacetylase and desuccinylase enzymatic activities, it also regulates metabolism homeostasis in mammals. Previous data has suggested that resveratrol, a potential activator of Sirtuins, played a stimulation role in steroidogenesis. Unfortunately, to date, the physiological roles of SIRT2 in ovarian granular cells (GCs) are largely unknown. Here, we studied the function and molecular mechanisms of SIRT2 on steroid hormone synthesis in GCs from Qinchuan cattle. Immunohistochemistry and western blotting showed that SIRT2 was expressed not only in GCs and cumulus cells, but also in oocytes and theca cells. We found that the secretion of progesterone was induced, whereas that of estrogen and testosterone secretion was suppressed by treatment with the SIRT2 inhibitor (Thiomyristoyl or SirReal2) or siRNA. Additionally, the PPARs/LXRα signaling pathways were suppressed by SIRT2 siRNA or inhibitors. The mRNA expression of CYP17, aromatase and StAR was suppressed, but the abundance of CYP11A1 mRNA was induced by SIRT2 inhibition. Furthermore, the PPARα agonist or PPARγ antagonist could mimic the effects of SIRT2 inhibition on hormones levels and gene expression associated with steroid hormone biosynthesis. In turn, those effects were abolished by the LXRα agonist (LXR-623). Together, these data support the hypothesis that SIRT2 regulates steroid hormone synthesis via the PPARs/LXRα pathways in GCs.


Subject(s)
Estradiol/biosynthesis , Granulosa Cells/metabolism , Liver X Receptors/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , Progesterone/biosynthesis , Sirtuin 2/metabolism , Testosterone/biosynthesis , Acetamides/pharmacology , Animals , Cattle , Cells, Cultured , Cholesterol Side-Chain Cleavage Enzyme/biosynthesis , Female , Indazoles/pharmacology , Liver X Receptors/agonists , Oocytes/metabolism , RNA Interference , RNA, Small Interfering/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Sirtuin 2/antagonists & inhibitors , Sirtuin 2/genetics , Steroid 17-alpha-Hydroxylase/biosynthesis , Theca Cells/metabolism , Thiazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...