Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 506
1.
Sci Total Environ ; : 173507, 2024 May 24.
Article En | MEDLINE | ID: mdl-38797413

The widespread use of herbicides impacts non-target organisms, promotes weed resistance, posing a serious threat to the global goal of green production in agriculture. Although the herbicide residues have been widely reported in individual environmental medium, their presence across different media has received scant attention, particularly in Mollisols regions with intensive agricultural application of herbicides. A systematic investigation was conducted in this study to clarify the occurrence of herbicide residues in soil, surface water, sediments, and grains from a typical agricultural watershed in the Mollisols region of Northeast China. Concentrations of studied herbicides ranged from 0.30 to 463.49 µg/kg in soil, 0.31-29.73 µg/kg in sediments, 0.006-1.157 µg/L in water, and 0.32-2.83 µg/kg in grains. Among these, Clomazone was the most priority herbicide detected in soil, sediments, and water, and Pendimethalin in grains. Crop types significantly affected the residue levels of herbicides in grains. Clomazone posed high ecological risks in soil and water, with 86.4 % of water samples showing high risks from herbicide mixtures (RQ > 1). These findings aid in enhancing our comprehension of the pervasive occurrence and potential ecological risks of herbicides in different media within typical agricultural watersheds, providing detailed data to inform the development of targeted mitigation strategies.

2.
J Fluoresc ; 2024 May 23.
Article En | MEDLINE | ID: mdl-38780833

Survival and prognosis of patients with acute myocardial infarction (AMI) are highly dependent on rapid and accurate diagnosis of myocardial damage. Troponin T is the primary diagnostic biomarker and is widely used in clinical practice. Amplified luminescent proximity homogeneous assay (AlphaLISA) may provide a solution to rapidly detect a small amount of analyte through molecular interactions between special luminescent donor beads and acceptor bead. Here, a double-antibody sandwich assay was introduced into AlphaLISA for rapid detection for early diagnosis of AMI and disease staging evaluation. The performance of the assay was evaluated. The study found that the cTnT assay has a linear range of 48.66 to 20,000 ng/L with a limit of detection of 48.66 ng/L. In addition, the assay showed no cross-reactivity with other classic biomarkers of myocardial infarction and was highly reproducible with intra- and inter-batch coefficients of variation of less than 10%, notably, only 3 min was taken, which is particularly suitable for clinical diagnosis. These results suggest that our method can be conveniently applied in the clinic to determine the severity of the patient's condition.

3.
Cell Stem Cell ; 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38692273

Nephron progenitor cells (NPCs) self-renew and differentiate into nephrons, the functional units of the kidney. Here, manipulation of p38 and YAP activity allowed for long-term clonal expansion of primary mouse and human NPCs and induced NPCs (iNPCs) from human pluripotent stem cells (hPSCs). Molecular analyses demonstrated that cultured iNPCs closely resemble primary human NPCs. iNPCs generated nephron organoids with minimal off-target cell types and enhanced maturation of podocytes relative to published human kidney organoid protocols. Surprisingly, the NPC culture medium uncovered plasticity in human podocyte programs, enabling podocyte reprogramming to an NPC-like state. Scalability and ease of genome editing facilitated genome-wide CRISPR screening in NPC culture, uncovering genes associated with kidney development and disease. Further, NPC-directed modeling of autosomal-dominant polycystic kidney disease (ADPKD) identified a small-molecule inhibitor of cystogenesis. These findings highlight a broad application for the reported iNPC platform in the study of kidney development, disease, plasticity, and regeneration.

4.
Nat Biomed Eng ; 2024 May 06.
Article En | MEDLINE | ID: mdl-38710839

Myocardial microvasculature and haemodynamics are indicative of potential microvascular diseases for patients with symptoms of coronary heart disease in the absence of obstructive coronary arteries. However, imaging microvascular structure and flow within the myocardium is challenging owing to the small size of the vessels and the constant movement of the patient's heart. Here we show the feasibility of transthoracic ultrasound localization microscopy for imaging myocardial microvasculature and haemodynamics in explanted pig hearts and in patients in vivo. Through a customized data-acquisition and processing pipeline with a cardiac phased-array probe, we leveraged motion correction and tracking to reconstruct the dynamics of microcirculation. For four patients, two of whom had impaired myocardial function, we obtained super-resolution images of myocardial vascular structure and flow using data acquired within a breath hold. Myocardial ultrasound localization microscopy may facilitate the understanding of myocardial microcirculation and the management of patients with cardiac microvascular diseases.

5.
PLoS One ; 19(5): e0302100, 2024.
Article En | MEDLINE | ID: mdl-38718066

BACKGROUND: M-type phospholipase A2 receptor (PLA2R) is a major auto-antigen of primary membranous nephropathy(PMN). Anti-PLA2R antibody levels are closely associated with disease severity and therapeutic effectiveness. Analysis of PLA2R antigen epitope reactivity may have a greater predictive value for remission compared with total PLA2R-antibody level. This study aims to elucidate the relationship between domain-specific antibody levels and clinical outcomes of PMN. METHODS: This retrospective analysis included 87 patients with PLA2R-associated PMN. Among them, 40 and 47 were treated with rituximab (RTX) and cyclophosphamide (CTX) regimen, respectively. The quantitative detection of -immunoglobulin G (IgG)/-IgG4 targeting PLA2R and its epitope levels in the serum of patients with PMN were obtained through time-resolved fluorescence immunoassays and served as biomarkers in evaluating the treatment effectiveness. A predictive PMN remission possibility nomogram was developed using multivariate logistic regression analysis. Discrimination in the prediction model was assessed using the area under the receiver operating characteristic curve (AUC-ROC).Bootstrap ROC was used to evaluate the performance of the prediction model. RESULTS: After a 6-month treatment period, the remission rates of proteinuria, including complete remission and partial remission in the RTX and CTX groups, were 70% and 70.21% (P = 0.983), respectively. However, there was a significant difference in immunological remission in the PLA2R-IgG4 between the RTX and CTX groups (21.43% vs. 61.90%, P = 0.019). Furthermore, we found differences in PLA2R-CysR-IgG4(P = 0.030), PLA2R-CTLD1-IgG4(P = 0.005), PLA2R-CTLD678-IgG4(P = 0.003), and epitope spreading (P = 0.023) between responders and non-responders in the CTX group. Multivariate logistic analysis showed that higher levels of urinary protein (odds ratio [OR], 0.49; 95% confidence interval [CI], 0.26-0.95; P = 0.035) and higher levels of PLA2R-CTLD1-IgG4 (OR, 0.79; 95%CI,0.62-0.99; P = 0.041) were independent risk factors for early remission. A multivariate model for estimating the possibility of early remission in patients with PMN is presented as a nomogram. The AUC-ROC of our model was 0.721 (95%CI, 0.601-0.840), in consistency with the results obtained with internal validation, for which the AUC-ROC was 0.711 (95%CI, 0.587-0.824), thus, demonstrating robustness. CONCLUSIONS: Cyclophosphamide can induce immunological remission earlier than rituximab at the span of 6 months. The PLA2R-CTLD1-IgG4 has a better predict value than total PLA2R-IgG for remission of proteinuria at the 6th month.


Autoantibodies , Glomerulonephritis, Membranous , Receptors, Phospholipase A2 , Remission Induction , Rituximab , Humans , Glomerulonephritis, Membranous/drug therapy , Glomerulonephritis, Membranous/immunology , Glomerulonephritis, Membranous/blood , Receptors, Phospholipase A2/immunology , Male , Female , Retrospective Studies , Middle Aged , Rituximab/therapeutic use , Autoantibodies/blood , Autoantibodies/immunology , Adult , Immunoglobulin G/blood , Immunoglobulin G/immunology , Cyclophosphamide/therapeutic use , Aged , ROC Curve , Treatment Outcome
6.
Ultrasound Med Biol ; 2024 May 02.
Article En | MEDLINE | ID: mdl-38702285

OBJECTIVE: This study aimed to realise 3-D super-resolution ultrasound imaging transcutaneously with a row-column array which has far fewer independent electronic channels and a wider field of view than typical fully addressed 2-D matrix arrays. The in vivo image quality of the row-column array is generally poor, particularly when imaging non-invasively. This study aimed to develop a suite of image formation and post-processing methods to improve image quality and demonstrate the feasibility of ultrasound localisation microscopy using a row-column array, transcutaneously on a rabbit model and in a human. METHODS: To achieve this, a processing pipeline was developed which included a new type of rolling window image reconstruction, which integrated a row-column array specific coherence-based beamforming technique with acoustic sub-aperture processing. This and other processing steps reduced the 'secondary' lobe artefacts, and noise and increased the effective frame rate, thereby enabling ultrasound localisation images to be produced. RESULTS: Using an in vitro cross tube, it was found that the procedure reduced the percentage of 'false' locations from ∼26% to ∼15% compared to orthogonal plane wave compounding. Additionally, it was found that the noise could be reduced by ∼7 dB and the effective frame rate was increased to over 4000 fps. In vivo, ultrasound localisation microscopy was used to produce images non-invasively of a rabbit kidney and a human thyroid. CONCLUSION: It has been demonstrated that the proposed methods using a row-column array can produce large field of view super-resolution microvascular images in vivo and in a human non-invasively.

7.
Water Sci Technol ; 89(9): 2498-2511, 2024 May.
Article En | MEDLINE | ID: mdl-38747963

Ventilation is paramount in sanitary and stormwater sewer systems to mitigate odor problems and avert pressure surges. Existing numerical models have constraints in practical applications in actual sewer systems due to insufficient airflow modeling or suitability only for steady-state conditions. This research endeavors to formulate a mathematical model capable of accurately simulating various operational conditions of sewer systems under the natural ventilation condition. The dynamic water flow is modeled using a shock-capturing MacCormack scheme. The dynamic airflow model amalgamates energy and momentum equations, circumventing laborious pressure iteration computations. This model utilizes friction coefficients at interfaces to enhance the description of the momentum exchange in the airflow and provide a logical explanation for air pressure. A systematic analysis indicates that this model can be easily adapted to include complex boundary conditions, facilitating its use for modeling airflow in real sewer networks. Furthermore, this research uncovers a direct correlation between the air-to-water flow rate ratio and the filling ratio under natural ventilation conditions, and an empirical formula encapsulating this relationship is derived. This finding offers insights for practical engineering applications.


Models, Theoretical , Sewage , Water Movements , Drainage, Sanitary
8.
IEEE Trans Cybern ; PP2024 Apr 30.
Article En | MEDLINE | ID: mdl-38687667

A data-driven dynamic internal model control (D 3 IMC) scheme is proposed for unknown nonlinear nonaffine systems bypassing modeling steps. Different from the traditional internal model constructed by either a first-principle or an identified model, a dynamic internal model (DIM) is developed in this work using I/O data where a compact form dynamic linearization approach is introduced for addressing the nonlinearity and nonaffine structure. Then, the D 3 IMC is proposed with both a nominal control algorithm and an uncertainty compensation control algorithm. The former can quickly respond to the feedback errors and the latter can compensate the model-plant mismatch and external disturbances. Meanwhile, the adaptive parameter updating law in the proposed D 3 IMC method inherits the robustness against uncertainties. A nominal D 3 IMC is also designed without including the compensator when there is no exogenous disturbance since the adaptive mechanism can handle system uncertainty. Further, the results are extended and a full-form dynamic linearization-based D 3 IMC is developed to address control of nonlinear systems with more complex dynamics. All the proposed D 3 IMC methods are data-driven without need of an explicit model, and thus they are significant extensions from the traditional model-based IMC. Simulation study verifies the results.

9.
J Environ Manage ; 358: 120856, 2024 May.
Article En | MEDLINE | ID: mdl-38608574

Transition-metal-oxide@heteroatom doped porous carbon composites have attracted considerable research interest because of their large theoretical adsorption capacity, excellent electrical conductivity and well-developed pore structure. Herein, Mn3O4-loaded phosphorus-doped porous carbon composites (Mn3O4@PC-900) were designed and fabricated for the electrosorption of La3+ in aqueous solutions. Due to the synergistic effect between Mn3O4 and PC-900, and the active sites provided by Mn-O-Mn, C/PO, C-P-O and Mn-OH, Mn3O4@PC-900 exhibits high electrosorption performance. The electrosorption value of Mn3O4@PC-900 was 45.34% higher than that of PC-900, reaching 93.02 mg g-1. Moreover, the adsorption selectivity reached 87.93% and 89.27% in La3+/Ca2+ and La3+/Na+ coexistence system, respectively. After 15 adsorption-desorption cycles, its adsorption capacity and retention rate were 50.34 mg g-1 and 54.12%, respectively. The electrosorption process is that La3+ first accesses the pores of Mn3O4@PC-900 to generate an electric double layer (EDL), and then undergoes further Faradaic reaction with Mn3O4 and phosphorus-containing functional groups through intercalation, surface adsorption and complexation. This work is hoped to offer a new idea for exploring transition-metal-oxide @ heteroatom doped porous carbon composites for separation and recovery of rare earth elements (REEs) by capacitive deionization.


Carbon , Electrodes , Lanthanum , Phosphorus , Lanthanum/chemistry , Phosphorus/chemistry , Carbon/chemistry , Adsorption , Porosity , Oxides/chemistry , Ions , Manganese Compounds/chemistry
10.
Water Sci Technol ; 89(8): 1928-1945, 2024 Apr.
Article En | MEDLINE | ID: mdl-38678400

Rainfall-derived inflow/infiltration (RDII) modelling during heavy rainfall events is essential for sewer flow management. In this study, two machine learning algorithms, random forest (RF) and long short-term memory (LSTM), were developed for sewer flow prediction and RDII estimation based on field monitoring data. The study implemented feature engineering for extracting physically significant features in sewer flow modelling and investigated the importance of the relevant features. The results from two case studies indicated the superior capability of machine learning models in RDII estimation in the combined and separated sewer systems, and LSTM model outperformed the two models. Compared to traditional methods, machine learning models were capable of simulating the temporal variation in RDII processes and improved prediction accuracy for peak flows and RDII volumes in storm events.


Machine Learning , Rain , Sewage , Models, Theoretical , Water Movements
11.
J Hazard Mater ; 471: 134409, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38678717

Understanding the soil pollutants' net input fluxes is essential for accurate early warning of regional soil pollution. However, the traditional input-output investigation method for soil pollutants' net input fluxes is often costly, especially at the regional scale. This study first assessed the land-use effects on soil heavy metals around a typical copper smelting area in China. Next, an improved spatial source apportionment receptor model, namely robust absolute principal component scores/robust geographically weighted regression with category land-use information (RAPCS/RGWR-CLU), was proposed to apportion the net source contributions, and its performance was compared with those of RAPCS/RGWR and the traditional absolute principal component scores/multiple linear regression (APCS/MLR). Finally, the net input fluxes of soil heavy metals were determined based on RAPCS/RGWR-CLU, and its performance was compared with that of the traditional input-output investigation method. Results showed that (i) land-use effects are significant for soil As, Cu, Pb, and Zn; (ii) RAPCS/RGWR-CLU achieves higher source apportionment accuracy than RAPCS/RGWR and APCS/MLR; and (iii) the net input fluxes determined by RAPCS/RGWR-CLU have similar accuracy to those determined by the traditional input-output investigation method but with significantly lower costs. Therefore, this study provided a cost-effective solution to determine the net input fluxes of soil pollutants.

12.
Environ Res ; 252(Pt 1): 118840, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38570130

Although trace metals in strawberry production system have attracted growing attention, little is known about metal fractionation in soil for strawberry cultivation. We hypothesized that the metal fractions in soil influenced by strawberry production had significant effect on food chain transport of metals and their risk in soil. Here, samples of strawberries and soil were gathered in the Yangtze River Delta, China to verify the hypothesis. Results showed that the acid-soluble Cr, Cd, and Ni in soil for strawberry cultivation were 21.5%-88.3% higher than those in open field soil, which enhanced uptake and bioaccessible levels of these metals in strawberries. Overall, the ecological, mobility, and health risks of Pb, Zn, Ni, and Cu in soil were at a low level. However, the ecological risk of bioavailable Cd, mobility risk of Cd, and cancer risk of bioavailable Cr in over 70% of the soil samples were at moderate, high, and acceptable levels, respectively. Since the increased acid-soluble Cr and Ni in soil were related to soil acidification induced by strawberry production, nitrogen fertilizer application should be optimized to prevent soil acidification and reduce transfer of Cr and Ni. Additionally, as Cd and organic matter accumulated in soil, the acid-soluble Cd and the ecological and mobility risks of Cd in soil were enhanced. To decrease transfer and risk of Cd in soil, organic fertilizer application should be optimized to mitigate Cd accumulation, alter organic matter composition, and subsequently promote the transformation of bioavailable Cd into residual Cd in soil.

13.
Dev Cell ; 2024 Apr 21.
Article En | MEDLINE | ID: mdl-38663400

Placental ischemia, resulting from inadequate remodeling of uterine spiral arteries, is a factor in the development of preeclampsia. However, the effect of endothelial progenitor cells that play a role in the vascular injury-repair program is largely unexplored during remodeling. Here, we observe that preeclampsia-afflicted uterine spiral arteries transition to a synthetic phenotype in vascular smooth muscle cells and characterize the regulatory axis in endothelial progenitor cells during remodeling in human decidua basalis. Excessive sEng, secreted by AMP-activated protein kinase (AMPK)-deficient endothelial progenitor cells through the inhibition of HO-1, damages residual endothelium and leads to the accumulation of extracellular matrix produced by vascular smooth muscle cells during remodeling, which is further confirmed by animal models. Collectively, our findings suggest that the impaired functionality of endothelial progenitor cells contributes to the narrowing of remodeled uterine spiral arteries, leading to reduced utero-placental perfusion. This mechanism holds promise in elucidating the pathogenesis of preeclampsia.

14.
Can Assoc Radiol J ; : 8465371241238917, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38577746

PURPOSE: To assess the diagnostic utility of clinical magnetic resonance spectroscopy (MRS) and diffusion-weighted imaging (DWI) in distinguishing between histological grading and isocitrate dehydrogenase (IDH) classification in adult diffuse gliomas. METHODS: A retrospective analysis was conducted on 247 patients diagnosed with adult diffuse glioma. Experienced radiologists evaluated DWI and MRS images. The Kruskal-Wallis test examined differences in DWI and MRS-related parameters across histological grades, while the Mann-Whitney U test assessed molecular classification. Receiver Operating Characteristic (ROC) curves evaluated parameter effectiveness. Survival curves, stratified by histological grade and IDH classification, were constructed using the Kaplan-Meier test. RESULTS: The cohort comprised 141 males and 106 females, with ages ranging from 19 to 85 years. The Kruskal-Wallis test revealed significant differences in ADC mean, Cho/NAA, and Cho/Cr concerning glioma histological grade (P < .01). Subsequent application of Dunn's test showed significant differences in ADC mean among each histological grade (P < .01). Notably, Cho/NAA exhibited a marked distinction between grade 2 and grade 3/4 gliomas (P < .01). The Mann-Whitney U test indicated that only ADC mean showed statistical significance for IDH molecular classification (P < .01). ROC curves were constructed to demonstrate the effectiveness of the specified parameters. Survival curves were also delineated to portray survival outcomes categorized by histological grade and IDH classification. Conclusions: Clinical MRS demonstrates efficacy in glioma histological grading but faces challenges in IDH classification. Clinical DWI's ADC mean parameter shows significant distinctions in both histological grade and IDH classification.

15.
Small ; : e2310795, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38501992

Developing the second near-infrared (NIR-II) photoacoustic (PA) agent is of great interest in bioimaging. Ag2 Se quantum dots (QDs) are one kind of potential probe for applications in NIR-II photoacoustic imaging (PAI). However, the surfaces with excess anions of Ag2 Se QDs, which increase the probability of nonradiative transitions of excitons benefiting PA imaging, are not conducive to binding electron donor ligands for potential biolabeling and imaging. In this study, Staphylococcus aureus (S. aureus) cells are driven for the biosynthesis of Ag2 Se QDs with catalase (CAT). Biosynthesized Ag2 Se (bio-Ag2 Se-CAT) QDs are produced in Se-enriched environment of S. aureus and have a high Se-rich surface. The photothermal conversion efficiency of bio-Ag2 Se-CAT QDs at 808 and 1064 nm is calculated as 75.3% and 51.7%, respectively. Additionally, the PA signal responsiveness of bio-Ag2 Se-CAT QDs is ≈10 times that of the commercial PA contrast agent indocyanine green. In particular, the bacterial CAT is naturally attached to bio-Ag2 Se-CAT QDs surface, which can effectively relieve tumor hypoxia. The bio-Ag2 Se-CAT QDs can relieve heat-initiated oxidative stress while undergoing effective photothermal therapy (PTT). Such biosynthesis method of NIR-II bio-Ag2 Se-CAT QDs opens a new avenue for developing multifunctional nanomaterials, showing great promise for PAI, hypoxia alleviation, and PTT.

16.
Ultrason Sonochem ; 104: 106846, 2024 Mar.
Article En | MEDLINE | ID: mdl-38492554

This study explores the mitigation of cavitation damage in hydraulic engineering through air entrainment. The primary aim is to experimentally analyze the shock wave characteristics emitted by cavitation bubbles adjacent to air bubbles affixed to a tube nozzle. The schlieren optical system is utilized to visualize the shock wave, while a hydrophone measures its pressure. Experiments are conducted on cavitation bubbles induced by the spark-generated method in the vicinity of air bubbles, varying the dimensionless distances and sizes of the air bubbles. The results indicate that (1) The introduction of an air bubble noticeably changes the morphology, kinematic behavior, and shock wave features of the cavitation bubble. (2) Four distinct shock wave patterns are identified based on the quantity and shape of the shock wave, with variations in the cavitation bubble's collapsing behavior and shock wave characteristics across different patterns. (3) The dimensionless distance γ and size δ exert significant influence on the shock wave's quantity, pressure peak, shape, and energy. With γ decreases or δ increases, the shock wave quantity increases while the shock wave intensity decreases. This investigation of the interaction between cavitation bubbles and air bubbles is essential for elucidating the mechanism through which air entrainment mitigates cavitation damage.

17.
Inj Prev ; 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38443161

BACKGROUND: Several previous studies have examined the association of ambient temperature with drowning. However, no study has investigated the effects of heat-humidity compound events on drowning mortality. METHODS: The drowning mortality data and meteorological data during the five hottest months (May to September) were collected from 46 cities in Southern China (2013-2018 in Guangdong, Hunan and Zhejiang provinces). Distributed lag non-linear model was first conducted to examine the association between heat-humidity compound events and drowning mortality at city level. Then, meta-analysis was employed to pool the city-specific exposure-response associations. Finally, we analysed the additive interaction of heat and humidity on drowning mortality. RESULTS: Compared with wet-non-hot days, dry-hot days had greater effects (excess rate (ER)=32.34%, 95% CI: 24.64 to 40.50) on drowning mortality than wet-hot days (ER=14.38%, 95%CI: 6.80 to 22.50). During dry-hot days, males (ER=42.40%, 95% CI: 31.92 to 53.72), adolescents aged 0-14 years (ER=45.00%, 95% CI: 21.98 to 72.35) and urban city (ER=36.91%, 95% CI: 23.87 to 51.32) showed higher drowning mortality risk than their counterparts. For wet-hot days, males, adolescents and urban city had higher ERs than their counterparts. Attributable fraction (AF) of drowning attributed to dry-hot days was 23.83% (95% CI: 21.67 to 26.99) which was significantly higher than that for wet-hot days (11.32%, 95% CI: 9.64 to 13.48%). We also observed that high temperature and low humidity had an additive interaction on drowning mortality. CONCLUSION: We found that dry-hot days had greater drowning mortality risk and burden than wet-hot days, and high temperature and low humidity might have synergy on drowning mortality.

18.
Int J Biol Macromol ; 264(Pt 1): 130522, 2024 Apr.
Article En | MEDLINE | ID: mdl-38428777

Kudzu, a plant known for its medicinal value and health benefits, is typically consumed in the form of starch. However, the use of native kudzu starch is limited by its high pasting temperature and low solubility, leading to a poor consumer experience. In this study, kudzu starch was treated using six modification techniques: ball milling, extrusion puffing, alcoholic-alkaline, urea-alkaline, pullulanase, and extrusion puffing-pullulanase. The results of the Fourier transform infrared spectrum showed that the intensity ratio of 1047/1022 cm-1 for the modified starches (1.02-1.21) was lower than that of the native kudzu starch (1.22). The relative crystallinity of modified kudzu starch significantly decreased, especially after ball milling, extrusion puffing, and alcoholic-alkaline treatment. Furthermore, scanning electron microscopy and confocal laser scanning microscopy revealed significant changes in the granular structures of the modified starches. After modification, the pasting temperature of kudzu starch decreased (except for the urea-alkaline treatment), and the apparent viscosity of kudzu starch decreased from 517.95 Pa·s to 0.47 Pa·s. The cold-water solubility of extrusion-puffing and extrusion puffing-pullulanase modified kudzu starch was >70 %, which was significantly higher than that of the native starch (0.11 %). These findings establish a theoretical basis for the potential development of instant kudzu powder.


Pueraria , Starch , Starch/chemistry , Solubility , Pueraria/chemistry , Viscosity , Water/chemistry , Urea
19.
Sci Total Environ ; 927: 172044, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38554953

Sedimentary records of polycyclic aromatic hydrocarbons (PAHs) and phthalates could reflect energy consumption and industrial production adjustment. However, there is limited knowledge about their effects on variations of PAH and phthalate compositions in the sediment core. The PAH and phthalate sedimentary records in Huguangyan Maar Lake in Guangdong, China were constructed, and random forest models were adopted to quantify the associated impact factors. Sums of sixteen PAH (∑16 PAH) and seven phthalate (∑7 PAE) concentrations in the sediment ranged from 28.8 to 1110 and 246-4290 µg/kg dry weight in 1900-2020. Proportions of 5-6 ring PAHs to the ∑16 PAHs increased from 32.0 %-40.7 % in 1900-2020 with increased coal and petroleum consumption, especially after 1980. However, those of 2-3 ring PAHs decreased from 30.7 % to 23.6 % due to the biomass substitution with natural gas. The proportions of bis (2-ethylhexyl) phthalate to the ∑7 PAEs decreased from 52.3 %-29.1 % in 1900-2020, while those of di-isobutyl phthalate increased (13.7 % to 42.3 %). The shift from traditional plasticizers to non-phthalates drove this transformation, though the primary plastic production is increasing. Our findings underscore the effectiveness of optimizing energy structures and updating chemical products in reducing organic pollution in aquatic environments.


Environmental Monitoring , Geologic Sediments , Lakes , Phthalic Acids , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , China , Geologic Sediments/chemistry , Lakes/chemistry , Water Pollutants, Chemical/analysis , Phthalic Acids/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Economic Development
20.
Anal Chem ; 96(13): 5315-5322, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38511619

Photoacoustic imaging (PAI) in the second near-infrared region (NIR-II), due to deeper tissue penetration and a lower background interference, has attracted widespread concern. However, the development of NIR-II nanoprobes with a large molar extinction coefficient and a high photothermal conversion efficiency (PCE) for PAI and photothermal therapy (PTT) is still a big challenge. In this work, the NIR-II CuTe nanorods (NRs) with large molar extinction coefficients ((1.31 ± 0.01) × 108 cm-1·M-1 at 808 nm, (7.00 ± 0.38) × 107 cm-1·M-1 at 1064 nm) and high PCEs (70% at 808 nm, 48% at 1064 nm) were synthesized by living Staphylococcus aureus (S. aureus) cells as biosynthesis factories. Due to the strong light-absorbing and high photothermal conversion ability, the in vitro PA signals of CuTe NRs were about 6 times that of indocyanine green (ICG) in both NIR-I and NIR-II. In addition, CuTe NRs could effectively inhibit tumor growth through PTT. This work provides a new strategy for developing NIR-II probes with large molar extinction coefficients and high PCEs for NIR-II PAI and PTT.


Nanoparticles , Nanotubes , Photoacoustic Techniques , Phototherapy/methods , Photoacoustic Techniques/methods , Staphylococcus aureus , Theranostic Nanomedicine/methods
...