Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
J Ethnopharmacol ; 333: 118394, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38823663

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Piper methysticum G. Forst (Piperaceae) is traditionally consumed in Polynesian culture. The roots are used to produce an entheogenic drink and traditional medicine with sedative and anxiolytic properties. There is also evidence that it functions as a pain reliever. Kavalactones, its main active ingredients, exhibit psychoactive effects on the central nervous system. However, the active ingredients and pharmacological mechanisms underlying the analgesic effect of kavalactones are unclear. AIM OF THE STUDY: This study investigated the effects of kavain and yangonin on nociception, inflammatory hyperalgesia, and neuropathic mechanical allodynia at the spinal level. MATERIALS AND METHODS: Male Sprague-Dawley rats were administered kavain and yangonin (27.14 and 19.36 nmol/rat) via intrathecal injection. Tail-flick tests were performed to evaluate the anti-nociceptive properties. The efficacy of kavain and yangonin on inflammatory hyperalgesia was examined using a plantar test in rats with carrageenan-induced paw inflammation. The von Frey test was used to assess mechanical allodynia induced by partial sciatic nerve ligation. RESULTS: Intrathecal injection of yangonin demonstrated a relatively potent anti-nociceptive effect and attenuated carrageenan-induced hyperalgesia. These effects were completely reversed by the co-administration of PF 514273, a cannabinoid 1 (CB1) receptor antagonist. However, yangonin did not affect mechanical allodynia at the spinal level. Kavain, another abundant kavalactone, did not affect nociception, hyperalgesia, or mechanical allodynia at the spinal level. CONCLUSIONS: Overall, our study demonstrated that yangonin exerts anti-nociception and anti-inflammatory hyperalgesia effects via CB1 receptors at the spinal level. We identified a single kavalactone, yangonin, extracted from kava as a promising treatment for pain.

2.
J Parkinsons Dis ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38905058

ABSTRACT

Background: The serotonin (5-HT) system can manipulate the processing of exogenous L-DOPA in the DA-denervated striatum, resulting in the modulation of L-DOPA-induced dyskinesia (LID). Objective: To characterize the effects of the serotonin precursor 5-hydroxy-tryptophan (5-HTP) or the serotonin transporter (SERT) inhibitor, Citalopram on L-DOPA-induced behavior, neurochemical signals, and underlying protein expressions in an animal model of Parkinson's disease. Methods: MitoPark (MP) mice at 20 weeks of age, subjected to a 14-day administration of L-DOPA/Carbidopa, displayed dyskinesia, referred to as LID. Subsequent investigations explored the effects of 5-HT-modifying agents, such as 5-HTP and Citalopram, on abnormal involuntary movements (AIMs), locomotor activity, neurochemical signals, serotonin transporter activity, and protein expression in the DA-denervated striatum of LID MP mice. Results: 5-HTP exhibited duration-dependent suppressive effects on developing and established LID, especially related to abnormal limb movements observed in L-DOPA-primed MP mice. However, Citalopram, predominantly suppressed abnormal axial movement induced by L-DOPA in LID MP mice. We demonstrated that 5-HTP could decrease L-DOPA-upregulation of DA turnover rates while concurrently upregulating 5-HT metabolism. Additionally, 5-HTP was shown to reduce the expressions of p-ERK and p-DARPP-32 in the striatum of LID MP mice. The effect of Citalopram in alleviating LID development may be attributed to downregulation of SERT activity in the dorsal striatum of LID MP mice. Conclusions: While both single injection of 5-HTP and Citalopram effectively mitigated the development of LID, the difference in mitigation of AIM subtypes may be linked to the unique effects of these two serotonergic agents on L-DOPA-derived DA and 5-HT metabolism.

3.
J Biomed Sci ; 31(1): 38, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38627765

ABSTRACT

BACKGROUND: Mitochondria are essential organelles involved in cellular energy production. Changes in mitochondrial function can lead to dysfunction and cell death in aging and age-related disorders. Recent research suggests that mitochondrial dysfunction is closely linked to neurodegenerative diseases. Glucagon-like peptide-1 receptor (GLP-1R) agonist has gained interest as a potential treatment for Parkinson's disease (PD). However, the exact mechanisms responsible for the therapeutic effects of GLP-1R-related agonists are not yet fully understood. METHODS: In this study, we explores the effects of early treatment with PT320, a sustained release formulation of the GLP-1R agonist Exenatide, on mitochondrial functions and morphology in a progressive PD mouse model, the MitoPark (MP) mouse. RESULTS: Our findings demonstrate that administration of a clinically translatable dose of PT320 ameliorates the reduction in tyrosine hydroxylase expression, lowers reactive oxygen species (ROS) levels, and inhibits mitochondrial cytochrome c release during nigrostriatal dopaminergic denervation in MP mice. PT320 treatment significantly preserved mitochondrial function and morphology but did not influence the reduction in mitochondria numbers during PD progression in MP mice. Genetic analysis indicated that the cytoprotective effect of PT320 is attributed to a reduction in the expression of mitochondrial fission protein 1 (Fis1) and an increase in the expression of optic atrophy type 1 (Opa1), which is known to play a role in maintaining mitochondrial homeostasis and decreasing cytochrome c release through remodeling of the cristae. CONCLUSION: Our findings suggest that the early administration of PT320 shows potential as a neuroprotective treatment for PD, as it can preserve mitochondrial function. Through enhancing mitochondrial health by regulating Opa1 and Fis1, PT320 presents a new neuroprotective therapy in PD.


Subject(s)
Cytochromes c , Exenatide , Glucagon-Like Peptide-1 Receptor Agonists , Mitochondrial Diseases , Cytochromes c/therapeutic use , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/metabolism , Exenatide/therapeutic use , Parkinson Disease/drug therapy , Disease Models, Animal
4.
J Chin Med Assoc ; 87(5): 538-549, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38587377

ABSTRACT

BACKGROUND: The neurotoxicity of 3,4-methylenedioxy-methamphetamine (MDMA) to the serotonergic system is well-documented. Dextromethorphan (DM), an antitussive drug, decreased morphine- or methamphetamine (MA)-induced reward in rats and may prevent MDMA-induced serotonergic deficiency in primates, as indicated by increased serotonin transporter (SERT) availability. We aimed to investigate the effects of DM on reward, behavioral sensitization, and neurotoxicity associated with loss of SERT induced by chronic MDMA administration in rats. METHODS: Conditioned place preference (CPP) and locomotor activity tests were used to evaluate drug-induced reward and behavioral sensitization; 4-[ 18 F]-ADAM/animal-PET and immunohistochemistry were used to explore the effects of DM on MDMA-induced loss of SERT. RESULTS: MDMA significantly reduced SERT binding in the rat brain; however, co-administration of DM significantly restored SERT, enhancing the recovery rate at day 14 by an average of ~23% compared to the MDMA group. In confirmation of the PET findings, immunochemistry revealed MDMA reduced SERT immunoactivity in all brain regions, whereas DM markedly increased the serotonergic fiber density after MDMA induction. CONCLUSION: Behavioral tests and in vivo longitudinal PET imaging demonstrated the CPP indexes and locomotor activities of the reward system correlate negatively with PET 4-[ 18 F]ADAM SERT activity in the reward system. Our findings suggest MDMA induces functional abnormalities in a network of brain regions important to decision-making processes and the motivation circuit. DM may exert neuroprotective effects to reverse MDMA-induced neurotoxicity.


Subject(s)
Dextromethorphan , N-Methyl-3,4-methylenedioxyamphetamine , Reward , Serotonin Plasma Membrane Transport Proteins , Animals , Male , Rats , Dextromethorphan/pharmacology , N-Methyl-3,4-methylenedioxyamphetamine/pharmacology , Positron-Emission Tomography , Rats, Sprague-Dawley , Serotonin Plasma Membrane Transport Proteins/metabolism
5.
Life Sci ; 340: 122441, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38253309

ABSTRACT

Although nalbuphine, a semi-synthetic analgesic compound, is less potent than morphine in terms of alleviating severe pain, our recent findings have revealed that nalbuphine-6-glucuronide (N6G), one of the glucuronide metabolites of nalbuphine, promotes a significantly more robust analgesic effect than its parent drug. Nevertheless, despite these promising observations, the precise mechanisms underlying the analgesic effects of nalbuphine glucuronides have yet to be determined. In this study, we aim to elucidate the mechanisms associated with the analgesic effects of nalbuphine glucuronides. Pharmacokinetic and pharmacodynamic studies were conducted to investigate the relationship between the central and peripheral compartments of nalbuphine and its derivatives. The analgesic responses of these compounds were evaluated based on multiple behavioral tests involving thermal and mechanical stimuli. Radioligand binding assays were also performed to determine the binding affinity and selectivity of these compounds for different opioid receptors. The results of these tests consistently confirmed that the heightened analgesic effects of N6G are mediated through its enhanced binding affinity for both mu- and kappa-opioid receptors, even comparable to those of morphine. Notably, N6G exhibited fewer side effects and did not induce sudden death, thereby highlighting its superior safety profile. Additionally, pharmacokinetic studies indicated that N6G could cross the blood-brain barrier when administered peripherally, offering pain relief. Overall, N6G provides great analgesic efficacy and enhanced safety. These findings highlight the potential value of nalbuphine glucuronides, particularly N6G, as promising candidates for the development of novel analgesic drugs.


Subject(s)
Nalbuphine , Receptors, Opioid, kappa , Humans , Nalbuphine/adverse effects , Receptors, Opioid, mu , Glucuronides/therapeutic use , Analgesics/pharmacology , Analgesics/therapeutic use , Receptors, Opioid/metabolism , Morphine/adverse effects , Pain/drug therapy , Pain/chemically induced , Analgesics, Opioid/therapeutic use
6.
Peptides ; 173: 171150, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38190970

ABSTRACT

Our previous studies have established that intrathecal oxytocin (OT) and angiotensin IV (Ang IV) injections induce antihyperalgesia and antiallodynia in rodents. Ang IV, a renin-angiotensin system hexapeptide, acts as an endogenous inhibitor that inhibits the oxytocin-degrading enzyme insulin-regulated aminopeptidase (IRAP). The pain inhibitory effects by Ang IV were found to be through its inhibition on IRAP to potentiate the effect of OT. However, these effects were found to be with a significant sex difference, which could be partially due to the higher expression of IRAP at the spinal cords of female. Therefore, we synthesized Ang IV and OT conjugates connected with a peptide bond and tested for their effects on hyperalgesia and allodynia. Carrageenan-induced hyperalgesia and partial sciatic nerve ligation (PSNL) were performed using rat models. Conjugates Ang IV-OT (Ang IV at the N-terminal) and OT-Ang IV (OT at the N-terminal) were synthesized and intrathecally injected into male and female rats. Our results showed that Ang IV-OT exhibited prominent antihyperalgesia in male rats, particularly during hyperalgesia recovery, whereas OT-Ang IV was more effective during development stage. Ang IV-OT showed clear antihyperalgesia in female rats, but OT-Ang IV had no significant effect. Notably, both conjugates alleviated neuropathic allodynia in male rats; however, OT-Ang IV had no effect in female rats, whereas Ang IV-OT induced significant antiallodynia. In conclusion, Ang IV-OT has greater therapeutic potential for treating hyperalgesia and allodynia than OT-Ang IV. Its effects were not affected by sex, unlike those of OT and OT-Ang IV, extending its possible clinical applications.


Subject(s)
Angiotensin II/analogs & derivatives , Hyperalgesia , Oxytocin , Rats , Female , Male , Animals , Oxytocin/pharmacology , Oxytocin/therapeutic use , Oxytocin/physiology , Hyperalgesia/drug therapy , Cystinyl Aminopeptidase/metabolism , Angiotensin II/pharmacology , Aminopeptidases , Injections, Spinal
7.
Eur J Pharmacol ; 950: 175778, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37169144

ABSTRACT

Cigarette smoking is the greatest risk factor for lung cancer, accounting for approximately 90% of all lung cancer-related deaths. Moreover, nicotine is associated with lung cancer onset and progression. Hypoxia-inducible factor 1α (HIF-1α) is involved in the metabolic reprogramming of cancer cells and accelerates cancer progression via regulation of pH and acid-base homeostasis. Previous studies have reported that nicotine upregulates HIF-1α expression. Therefore, we hypothesized that nicotine-mediated activation of HIF-1α regulates metabolic reprogramming and pH homeostasis in non-small cell lung cancer A549 cells and could potentially play a role in the progression of lung cancer. We examined the effects of nicotine on metabolic reprogramming and intracellular pH (pHi) homeostasis, which are critical for cancer progression. A549 cells were exposed to nicotine in the absence and presence of the nicotinic acetylcholine receptor antagonist, mecamylamine (MEC). We then analyzed glycolytic stress and the activity and expression of acid-extruder proteins, including the Na+-H+ exchanger 1 (NHE1) and monocarboxylate cotransporters 1 & 4 (MCT1 and MCT4, respectively). Nicotine promoted the Warburg effect, which is associated with accelerated migration of A549 cells through the activation of nicotinic acetylcholine receptors. Furthermore, nicotine upregulated the activities and expression of acid-extruder proteins, namely NHE1 and MCT4, and facilitated glycolysis. To the best of our knowledge, this is the first study to demonstrate that nicotine plays a pivotal regulatory role in metabolic reprogramming as well as regulation of pHi homeostasis in A549 cells via activation of nicotinic acetylcholine receptors and can therefore aggravate lung cancer progression.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Receptors, Nicotinic , Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Nicotine/pharmacology , Receptors, Nicotinic/metabolism , Lung Neoplasms/metabolism , Cell Line, Tumor , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
8.
Int J Mol Sci ; 24(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36902115

ABSTRACT

To determine the efficacy of PT320 on L-DOPA-induced dyskinetic behaviors, and neurochemistry in a progressive Parkinson's disease (PD) MitoPark mouse model. To investigate the effects of PT320 on the manifestation of dyskinesia in L-DOPA-primed mice, a clinically translatable biweekly PT320 dose was administered starting at either 5 or 17-weeks-old mice. The early treatment group was given L-DOPA starting at 20 weeks of age and longitudinally evaluated up to 22 weeks. The late treatment group was given L-DOPA starting at 28 weeks of age and longitudinally observed up to 29 weeks. To explore dopaminergic transmission, fast scan cyclic voltammetry (FSCV) was utilized to measure presynaptic dopamine (DA) dynamics in striatal slices following drug treatments. Early administration of PT320 significantly mitigated the severity L-DOPA-induced abnormal involuntary movements; PT320 particularly improved excessive numbers of standing as well as abnormal paw movements, while it did not affect L-DOPA-induced locomotor hyperactivity. In contrast, late administration of PT320 did not attenuate any L-DOPA-induced dyskinesia measurements. Moreover, early treatment with PT320 was shown to not only increase tonic and phasic release of DA in striatal slices in L-DOPA-naïve MitoPark mice, but also in L-DOPA-primed animals. Early treatment with PT320 ameliorated L-DOPA-induced dyskinesia in MitoPark mice, which may be related to the progressive level of DA denervation in PD.


Subject(s)
Antiparkinson Agents , Dyskinesia, Drug-Induced , Glucagon-Like Peptide-1 Receptor , Levodopa , Parkinson Disease , Animals , Mice , Antiparkinson Agents/adverse effects , Antiparkinson Agents/therapeutic use , Delayed-Action Preparations/therapeutic use , Disease Models, Animal , Dopamine/adverse effects , Dopamine/therapeutic use , Dyskinesia, Drug-Induced/drug therapy , Glucagon-Like Peptide-1 Receptor/agonists , Levodopa/adverse effects , Levodopa/therapeutic use , Oxidopamine , Parkinson Disease/drug therapy
9.
Nicotine Tob Res ; 25(7): 1251-1260, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-36520961

ABSTRACT

INTRODUCTION: Tobacco products are addictive, with nicotine serving as the major addictive ingredient. Chronic tobacco use or chronic administration of nicotine alone results in both physiological and psychological dependence. Our previous studies indicated that dextromethorphan (DM) could effectively attenuate the dependence of morphine and methamphetamine. Thus, we further investigated the possible effects of DM on nicotine dependence. AIMS AND METHODS: Conditioned place preference (CPP) test was used to examine nicotine-induced rewarding effects as well as the drug-seeking-related behavior in rats. Nicotine dependence was induced by continuous subcutaneous infusion of nicotine via an osmotic minipump for 7 days and abstinence was initiated by removal of the pump. Withdrawal signs were observed and quantified. Locomotor activity was measured to determine the behavioral sensitization induced by nicotine. To investigate the activity of mesolimbic dopaminergic neuronal activity in correlation with the effects of nicotine, the animals were sacrificed and the nucleus accumbens (NAc), dorsal striatum (DS), and medial prefrontal cortex (mPFC) were dissected and used to determine the contents of dopamine (DA) and its metabolites using high-performance liquid chromatography (HPLC). RESULTS: Our results showed that DM could suppress nicotine-induced rewarding effect and drug-seeking-related behavior. In addition, co-administration and post-treatment of DM could both attenuate nicotine withdrawal signs. Moreover, DM could suppress nicotine-induced behavioral sensitization. Neurochemical experiments show that co-administration and post-treatment of DM abolished nicotine-induced increase of the DA turnover rate in the mPFC, but not in the NAc and DS. CONCLUSIONS: The results suggest that DM has a great therapeutic potential in the treatment of nicotine dependence. IMPLICATIONS: Our results showed that DM could suppress nicotine-induced rewarding effect and drug-seeking-related behavior. In addition, co-administration and post-treatment of DM could both attenuate nicotine withdrawal signs. Moreover, DM could suppress nicotine-induced behavioral sensitization. Neurochemical experiments show that co-administration and post-treatment of DM abolished nicotine-induced increase of the DA turnover rate in the mPFC, but not in the NAc and DS. These results suggest that DM has a great therapeutic potential in the treatment of nicotine dependence.


Subject(s)
Substance Withdrawal Syndrome , Tobacco Use Disorder , Rats , Animals , Nicotine/adverse effects , Nicotine/metabolism , Dextromethorphan/pharmacology , Dextromethorphan/metabolism , Rats, Sprague-Dawley , Tobacco Use Disorder/drug therapy , Tobacco Use Disorder/metabolism , Reward , Nucleus Accumbens/metabolism , Dopamine/metabolism , Substance Withdrawal Syndrome/drug therapy , Substance Withdrawal Syndrome/metabolism
10.
BMC Pregnancy Childbirth ; 22(1): 497, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35715784

ABSTRACT

BACKGROUND: Peripartum cardiomyopathy (PPCM) is defined as an idiopathic cardiomyopathy occurring in the last month of pregnancy or the first 6 months postpartum without an identifiable cause. PPCM is suspected to be triggered by the generation of a cardiotoxic fragment of prolactin and the secretion of a potent antiangiogenic protein from the placental, but no single factor has been identified or defined as the underlying cause of the disease. Influenza virus can cause PPCM through immune-mediated response induced by proinflammatory cytokines from host immunity and endothelial cell dysfunction. We report a case in a parturient woman undergoing a cesarean delivery, who had influenza A pneumonia and PPCM. CASE PRESENTATION: A parturient woman at 40 weeks and 1 day of gestation who had experienced gestational hypertension accompanied by pulmonary edema developed hypotension after undergoing an emergency cesarean delivery. An elevation of N-terminal prohormone of brain natriuretic peptide (NT-proBNP) was noted, and echocardiography revealed a left ventricular ejection fraction of 20%. She underwent a nasopharyngeal swab test, in which influenza A antigen was positive. She was diagnosed as having PPCM and received anti-viral treatment. After antiviral treatment, hemodynamic dysfunction stabilized. We present and discuss the details of this event. CONCLUSION: PPCM is a heart disease that is often overlooked by medical personnel. Rapid swab tests, serum creatine kinase measurement, and echocardiography are imperative diagnostic approaches for the timely recognition of virus-associated cardiomyopathy in peripartum women with influenza-like disease and worsening dyspnea, especially during the epidemic season. Prompt antiviral treatment should be considered, particularly after PPCM is diagnosed.


Subject(s)
Cardiomyopathies , Heart Failure , Influenza A virus , Influenza, Human , Pneumonia , Pregnancy Complications, Cardiovascular , Puerperal Disorders , Antiviral Agents/therapeutic use , Cardiomyopathies/diagnosis , Cardiomyopathies/etiology , Female , Humans , Influenza, Human/complications , Influenza, Human/diagnosis , Influenza, Human/drug therapy , Peripartum Period , Placenta , Pregnancy , Pregnancy Complications, Cardiovascular/diagnosis , Puerperal Disorders/diagnosis , Puerperal Disorders/drug therapy , Puerperal Disorders/etiology , Stroke Volume , Ventricular Function, Left
11.
J Parkinsons Dis ; 12(5): 1545-1565, 2022.
Article in English | MEDLINE | ID: mdl-35599497

ABSTRACT

BACKGROUND: L-DOPA-induced dyskinesia (LID), occurring with aberrant processing of exogenous L-DOPA in the dopamine-denervated striatum, is a main complication of levodopa treatment in Parkinson's disease. OBJECTIVE: To characterize the effects of the vesicular antagonist tetrabenazine (TBZ) on L-DOPA-induced behavior, neurochemical signals, and underlying protein expressions in an animal model of Parkinson's disease. METHODS: 20-week-old MitoPark mice were co-treated or separately administered TBZ and L-DOPA for 14 days. Abnormal involuntary movements (AIMs) and locomotor activity were analyzed. To explore dopamine (DA) transmission, fast scan cyclic voltammetry was used to assess presynaptic DA dynamics in striatal slices following treatments. PET imaging with 4-[18F]-PE2I, ADAM and immunoblotting assays were used to detect receptor protein changes in the DA-denervated striatum. Finally, nigrostriatal tissues were collected for HPLC measures of DA, serotonin and their metabolites. RESULTS: A single injection of TBZ given in the interval between the two L-DOPA/Carbidopa treatments significantly attenuated L-DOPA-induced AIMs expression and locomotor hyperactivity. TBZ was shown to reduce tonic and phasic release of DA following L-DOPA treatment in DA-denervated striatal tissue. In the DA-depleted striatum, TBZ decreased the expression of L-DOPA-enhanced D1 receptors and the serotonin reuptake transporter. Neurochemical analysis indicated that TBZ attenuated L-DOPA-induced surges of DA levels by promoting DA turnover in the nigrostriatal system. CONCLUSIONS: Our findings demonstrate that TBZ diminishes abnormal striatal DA transmission, which involves the ability of TBZ to modulate the presymptomatic dynamics of DA, and then mitigate aberrant release of exogenous L-DOPA from nerve terminals. The results support the potential of repositioning TBZ to counteract LID development.


Subject(s)
Dyskinesia, Drug-Induced , Parkinson Disease , Animals , Corpus Striatum/metabolism , Disease Models, Animal , Dopamine/metabolism , Dyskinesia, Drug-Induced/etiology , Levodopa/adverse effects , Mice , Oxidopamine/metabolism , Oxidopamine/pharmacology , Parkinson Disease/complications , Rats , Rats, Sprague-Dawley , Serotonin/metabolism , Serotonin/pharmacology , Tetrabenazine/metabolism , Tetrabenazine/pharmacology
12.
Psychoneuroendocrinology ; 136: 105603, 2022 02.
Article in English | MEDLINE | ID: mdl-34891047

ABSTRACT

Our previous study verified a sex difference of anti-hyperalgesia in rats and anti-allodynia in mice induced by intrathecal oxytocin (OT). In the model of intraplantar carrageenan-induced inflammatory hyperalgesia, intrathecal OT injection induced a substantial anti-hyperalgesia in male rats even at a low dose (0.125 nmol). In contrast, female rats only responded to an extremely high dose (1.25 nmol). This sex difference concurs with a lower expression of OT receptors and higher expression of insulin-regulated aminopeptidase (IRAP; OT degrading enzyme) in the spinal cords of female rats. In this study, we further determined the role of female hormones in this sex difference by using ovariectomized rats. Our results show that a low dose of intrathecal OT caused a significant anti-hyperalgesia effect in ovariectomized female rats, similar to that seen in male rats. Ovariectomy did not cause any change of paw edema except at the late stage of convalescence when compared with the sham-operated group. Ovariectomy-induced faster recovery from edema but did not affect the severity of hyperalgesia. Moreover, there was a similar amount of IRAP expression in ovariectomized and sham rats. When estradiol (E2) was given together with OT, OT-induced anti-hyperalgesia was abolished at the developmental stage of hyperalgesia in ovariectomized rats. These results show an inhibitory role of female hormones generated from ovaries (mainly estrogen) in the sex difference of anti-hyperalgesia induced by OT. This study suggests the feasibility of a novel OT-based remedy to treat hyperalgesia in men and in menopausal women no receiving hormonal supplements.


Subject(s)
Hyperalgesia , Oxytocin , Animals , Edema/metabolism , Estrogens/metabolism , Estrogens/pharmacology , Female , Humans , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Male , Mice , Ovariectomy , Oxytocin/metabolism , Rats , Rats, Sprague-Dawley , Spinal Cord/metabolism
13.
Drug Alcohol Depend ; 229(Pt A): 109102, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34634646

ABSTRACT

BACKGROUND: Alcohol has dual effects on many systems, including the pain system. We will test whether and how chronic alcohol consumption enhances pain sensation to develop pain disorder. METHODS: We conducted a retrospective matched cohort study using data from the National Health Insurance Research Database (NHIRD) in Taiwan, in patients with and without alcohol use disorder (AUD). This study enrolled 19,174 individuals with AUD as study cohort and 19,174 propensity score-matched individuals without AUD as comparison cohort. The outcome was the incidence of pain disorders and the need for analgesics. The hazard ratios of pain disorders and the need for analgesics were evaluated using Cox proportional hazard regression analysis after adjusting for age, sex, index year, comorbidities, urbanization, areas of residence, and insurance premium. RESULTS: The 14 years of follow-up showed that AUD patients had a higher adjusted hazard ratio (aHR) for developing pain disorders than in non-AUD controls [aHR= 1.290, 95% confidence interval (CI): 1.045-1.591]. Besides, AUD patients had a higher risk of analgesic use (aHR = 1.081, 95% CI: 1.064-1.312), including opioids and non-opioid analgesics. Most importantly, AUD patients required more days of analgesic use, increased dose of analgesics, and higher costs of analgesics. Moreover, AUD patients had more anemia (aHR=2.772, 95% CI: 2.581-2.872), which could be a mediating factor. CONCLUSIONS: AUD patients had higher risks of developing pain disorders and subsequently increased analgesic demand. These results suggest that AUD worsened pain, and pain syndrome is correlated with the duration of chronic alcohol exposure.


Subject(s)
Alcoholism , Alcohol Drinking , Alcoholism/epidemiology , Analgesics, Opioid , Cohort Studies , Humans , Incidence , Pain , Proportional Hazards Models , Retrospective Studies , Risk Factors , Taiwan/epidemiology
14.
Molecules ; 26(13)2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34201982

ABSTRACT

During the last three decades, a variety of different studies on bioactive peptides that are opioid receptor ligands, have been carried out, with regard to their isolation and identification, as well as their molecular functions in living organisms. Thus, in this review, we would like to summarize the present state-of-the art concerning hemorphins, methodological aspects of their identification, and their potential role as therapeutic agents. We have collected and discussed articles describing hemorphins, from their discovery up until now, thus presenting a very wide spectrum of their characteristic and applications. One of the major assets of the present paper is a combination of analytical and pharmacological aspects of peptides described by a team who participated in the initial research on hemorphins. This review is, in part, focused on the analysis of endogenous opioid peptides in biological samples using advanced techniques, description of the identification of synthetic/endogenous hemorphins, their involvement in pharmacology, learning, pain and other function. Finally, the part regarding hemorphin analogues and their synthesis, has been added.


Subject(s)
Opioid Peptides/metabolism , Pain/metabolism , Peptide Fragments/metabolism , Receptors, Opioid/metabolism , Animals , Humans
15.
ACS Pharmacol Transl Sci ; 4(2): 858-869, 2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33860208

ABSTRACT

GLP-1 agonists have become increasingly interesting as a new Parkinson's disease (PD) clinical treatment strategy. Additional preclinical studies are important to validate this approach and define the disease stage when they are most effective. We hence characterized the efficacy of PT320, a sustained release formulation of the long acting GLP-1 agonist, exenatide, in a progressive PD (MitoPark) mouse model. A clinically translatable biweekly PT320 dose was administered starting at 5 weeks of age and longitudinally evaluated to 24 weeks, and multiple behavioral/cellular parameters were measured. PT320 significantly improved spontaneous locomotor activity and rearing in MitoPark PD mice. "Motivated" behavior also improved, evaluated by accelerating rotarod performance. Behavioral improvement was correlated with enhanced cellular and molecular indices of dopamine (DA) midbrain function. Fast scan cyclic voltammetry demonstrated protection of striatal and nucleus accumbens DA release and reuptake in PT320 treated MitoPark mice. Positron emission tomography showed protection of striatal DA fibers and tyrosine hydroxylase protein expression was augmented by PT320 administration. Early PT320 treatment may hence provide an important neuroprotective therapeutic strategy in PD.

16.
Peptides ; 136: 170455, 2021 02.
Article in English | MEDLINE | ID: mdl-33253777

ABSTRACT

Alcohol can increase the sensitivity to painful stimulation or convert insensibility to pain at different stages. We hypothesized that chronic alcohol consumption changes the level of LVV-hemorphin-7 (abbreviated as LVV-H7, an opioid-like peptide generated from hemoglobin ß-chain), thereby affecting pain sensation. We established a chronic alcohol-exposed rat model to investigate the effects of LVV-H7. Adult male Sprague-Dawley rats were subjected to daily intraperitoneal injection of 10 % ethanol (w/v) at 0.5 g/kg for 15 days and subsequent alcohol withdrawal for 5 days. Using different pharmacological strategies to affect the LVV-H7 level, we investigated the correlation between LVV-H7 and pain-related behavior. Tail-flick and hot plate tests were employed to investigate alcohol-induced pain-related behavioral changes. The serum level of LVV-H7 was determined by ELISA. Our results showed that alcohol first induced an analgesia followed by a hyperalgesia during alcohol withdrawal, which could be driven by the quantitative change of LVV-H7. A positive correlation between the level of LVV-H7 and Δtail-flick latency (measured latency minus basal latency) confirmed this finding. Moreover, we revealed that the LVV-H7 levels were determined by the activity of cathepsin D and red blood cell/hemoglobin counts, which could be affected by alcohol. These results suggest that the deterioration of anti-nociception induced by alcohol is correlated to the decreased level of LVV-H7, and this could be due to alcohol-induced anemia. This study may help to develop LVV-H7 structure-based novel analgesics for treating alcohol-induced pain disorders and thus ameliorate the complications in alcoholics.


Subject(s)
Hyperalgesia/drug therapy , Peptide Fragments/blood , Somatoform Disorders/drug therapy , Alcohols/toxicity , Analgesics/pharmacology , Animals , Disease Models, Animal , Hemoglobins , Humans , Hyperalgesia/blood , Hyperalgesia/genetics , Hyperalgesia/pathology , Pain Management , Rats , Rats, Sprague-Dawley , Somatoform Disorders/blood , Somatoform Disorders/chemically induced , Somatoform Disorders/pathology
17.
Peptides ; 126: 170236, 2020 04.
Article in English | MEDLINE | ID: mdl-31874233

ABSTRACT

The regulation of intracellular pH (pHi) plays a vital role in various cellular functions. We previously demonstrated that three different acid extruders, the Na+-H+ exchanger (NHE), Na+-HCO3- co-transporter (NBC) and H+-linked monocarboxylate transporter (MCT), functioned together in cultured human radial artery smooth muscle cells (HRASMCs). However, the functions of acid-loading transporters in HRASMCs remain poorly understood. Urotensin II (U-II), one of the most potent vasoconstrictors, is highly expressed in many cardiovascular diseases. The aim of this present study was to determine the concentration effect of U-II (3 pM∼100 nM) on the functional activity of pHi regulators in HRASMCs. Cultured HRASMCs were derived from segments of human radial arteries obtained from patients undergoing bypass grafting. Changes in pHi recovery due to intracellular acidification and alkalization induced by NH4Cl prepulse and Na-acetate prepulse, respectively, were detected by microspectrofluorimetry with the pH-sensitive fluorescent dye BCECF. Our present study showed that (a) U-II increased the activity of NHE in a concentration-dependent manner but did not change that of NBC or MCT or resting pHi, (b) the Cl--OH- exchanger (CHE) facilitated base extrusion, and (c) U-II induced a concentration-dependent increase in the activity of CHE. In conclusion, for the first time, our results highlight a concentration-dependent increase in the activity of NHE and CHE, but not NBC and MCT, induced by U-II in HRASMCs.


Subject(s)
Myocytes, Smooth Muscle/drug effects , Radial Artery/drug effects , Urotensins/pharmacology , Cytoplasm/metabolism , Dose-Response Relationship, Drug , Humans , Hydrogen-Ion Concentration , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/physiology , Radial Artery/cytology , Radial Artery/metabolism , Radial Artery/physiology , Sodium-Hydrogen Exchangers/metabolism
18.
Int J Mol Sci ; 20(24)2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31835787

ABSTRACT

This study analyzed gender differences in the progressive dopamine (DA) deficiency phenotype in the MitoPark (MP) mouse model of Parkinson's disease (PD) with progressive loss of DA release and reuptake in midbrain DA pathways. We found that the progressive loss of these DA presynaptic parameters begins significantly earlier in male than female MP mice. This was correlated with behavioral gender differences of both forced and spontaneous motor behavior. The degeneration of the nigrostriatal DA system in MP mice is earlier and more marked than that of the mesolimbic DA system, with male MP mice again being more strongly affected than female MP mice. After ovariectomy, DA presynaptic and behavioral changes in female mice become very similar to those of male animals. Our results suggest that estrogen, either directly or indirectly, is neuroprotective in the midbrain DA system. Our results are compatible with epidemiological data on incidence and symptom progression in PD, showing that men are more strongly affected than women at early ages.


Subject(s)
Dopamine/metabolism , Motor Activity , Parkinson Disease/physiopathology , Animals , Behavior, Animal , Disease Models, Animal , Electric Stimulation , Female , Male , Mice, Inbred C57BL , Ovariectomy , Probability , Tyrosine 3-Monooxygenase/metabolism
19.
Front Cell Neurosci ; 13: 86, 2019.
Article in English | MEDLINE | ID: mdl-30930747

ABSTRACT

Stereotypic and/or repetitive behavior is one of the major symptoms of autism spectrum disorder (ASD). Increase of self-grooming behavior is a behavioral phenotype commonly observed in the mouse models for ASD. Previously, we have shown that knockout of acid-sensing ion channel 3 (ASIC3) led to the increased self-grooming behavior in resident-intruder test. Given the facts that ASIC3 is mainly expressed in the peripheral dorsal root ganglion (DRG) and conditional knockout of ASIC3 in the proprioceptors induced proprioception deficits. We speculate a hypothesis that stereotypic phenotype related to ASD, pararalled with striatal dysfunction, might be caused by proprioception defect in the peripheral sensory neuron origin. Herein, we investigate in depth whether and how ASIC3 is involved in the regulation of self-grooming behavior. First, we observed that Asic3 null mutant mice exhibited increased self-grooming in social interaction during juvenile stage. Similarly, they displayed increased self-grooming behavior in a novel cage in the absence of cagemate. To further understand the mechanism by which ASIC3 affects grooming behavior, we analyzed neurochemical, neuropathological and electrophysiological features in the dorsal striatum of Asic3 null mutant mice. Knockout of Asic3 increased dopamine (DA) activity and phospho-ERK immunoreactivities in the dorsal striatum. Furthermore, we detected a lower paired-pulse ratio (PPR) and impaired long-term potentiation (LTP) in corticostriatal circuits in Asic3 null mutant mice as compared with wild-type (WT) littermates. Moreover, knockout of Asic3 altered the medial spiny neurons in the striatum with defects in presynaptic function and decrease of dendritic spines. Lastly, genetic ablation of Asic3 specifically in parvalbumin-positive (PV+) cells resulted in the increase of self-grooming behavior in mice. These findings suggest knockout of Asic3 in the PV+ neurons alters grooming behavior by co-opting corticostriatal circuits.

20.
J Neurochem ; 150(1): 56-73, 2019 07.
Article in English | MEDLINE | ID: mdl-30933310

ABSTRACT

To determine the role of reduced dopaminergic transmission for declines of forced versus spontaneous behavior, we used a model of Parkinson's disease with progressive degeneration of dopamine (DA) neurons, the MitoPark mouse. Mice were subjected to rotarod tests of motor coordination, and open field and cylinder tests for spontaneous locomotor activity and postural axial support. To measure DA release in dorsal striatum and the shell of Nucleus Accumbens (NAc), we used ex vivo fast-scan cyclic voltammetry in 6- to 24-week-old mice. To determine decline of DA transporter function, we used 18FE-PE2I positron emission tomography. We show here that fast-scan cyclic voltammetry is a sensitive tool to detect evoked DA release dysfunction in MitoPark mice and that electrically evoked DA release is affected earlier in nigrostriatal than mesolimbic DA systems. DA reuptake was also affected more slowly in NAc shell. Positron emission tomography data showed DA uptake to be barely above detection levels in 16- and 20-week-old MitoPark mice. Rotarod performance was not impaired until mice were 16 weeks old, when evoked DA release in striatum had decreased to ≈ 40% of wild-type levels. In contrast, impairment of open field locomotion and rearing began at 10 weeks, in parallel with the initial modest decline of evoked DA release. We conclude that forced behaviors, such as motivation not to fall, can be partially maintained even when DA release is severely compromised, whereas spontaneous behaviors are much more sensitive to impaired DA release, and that presumed secondary non-dopaminergic system alterations do not markedly counteract or aggravate effects of severe impairment of DA release. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Subject(s)
Behavior, Animal/physiology , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Nerve Degeneration/metabolism , Parkinsonian Disorders/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Locomotion/physiology , Mice , Parkinsonian Disorders/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...