Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 598
Filter
1.
Inorg Chem ; 63(38): 17478-17487, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39229693

ABSTRACT

Metalo hydrogen-bonded organic frameworks (MHOFs) have received growing interest in designing crystalline functional materials. However, reports on bifunctional MHOFs showing magnetic and proton-conductive properties are extremely limited and their design is challenging. Herein, we investigated the magnetic and proton-conductive properties of two sulfonated CoHOF and MnHOF, {M(H2O)2(abs)2}n (M = Co2+ and Mn2+, Habs = 4-aminoazobenzene-4'-sulfonic anion), constructed by coordination chains. The supramolecular frameworks sustained by H bonds between -SO3- and coordinated water show directional ladder-type H bonds with hydrophilic nanochannels, leading to high proton conduction with exceptionally high conductivity around 10-2 S cm-1 at 100 °C under 97% relative humidity. In particular, the maximum σ value of CoHOF, 2.11 × 10-2 S cm-1, recorded the highest value among the reported proton-conducting materials showing slow magnetic relaxation. Meanwhile, the molecular structure of organosulfonate enables the magnetic isolation of high-spin Co2+ and Mn2+ centers in the frameworks. Magnetic measurements indicated that the MHOFs show field-induced single-ion magnet (SIM) properties, making these compounds rare magnetic-proton-conductive MHOFs. The work provides not only two unique MHOFs with SIM behavior and high proton conduction performance but also avenues for designing stable bifunctional MHOFs via a coordination chain approach.

2.
Heliyon ; 10(17): e36218, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39281616

ABSTRACT

Background: Low-density neutrophils are heterogeneous immune cells with immunosuppressive (such as polymorphonuclear myeloid-derived suppressor cells [PMN-MDSC]) or pro-inflammatory (such as low-density granulocytes [LDG]) properties that have been well described in multiple cancers and immune diseases. However, its role in allergic rhinitis (AR) is still unclear. Methods: In the present study, we defined low-density neutrophils as CD14-CD11B+CD15+LOX-1+ (LOX-1+ neutrophils), and their levels in the peripheral blood (PB) were evaluated and compared between patients with AR and healthy donors using flow cytometric analysis. LOX-1 expression on polymorphonuclear neutrophils was identified. Carboxyfluorescein succinimidyl ester (CFSE)-stained CD3+ T cells were cultured alone or with LOX-1+ neutrophils, T cell proliferation was assessed using flow cytometry, and pro-inflammatory cytokines in the supernatants were detected using enzyme-linked immunosorbent assay (ELISA). Clinicopathological analyses were performed to gain a thorough understanding of LOX-1+ neutrophils. Results: We determined that LOX-1+ neutrophils were significantly increased in the PB of patients with AR, and LOX-1 expression in neutrophils from patients with AR was elevated. Interestingly, LOX-1+ neutrophils derived from patients with AR, unlike PMN-MDSC, promoted T cell proliferation and pro-inflammatory cytokine production. Moreover, clinicopathological analysis revealed that there was no any relation between circulating LOX-1+ neutrophil levels and the levels of IgE, age and sex. Conclusion: These findings indicate that elevated circulating LOX-1+ neutrophils play a pro-inflammatory role in AR.

3.
Clin Res Hepatol Gastroenterol ; : 102464, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39276854

ABSTRACT

INTRODUCTION: The prognostic value of baseline variant allele frequency (VAF) in circulating tumor DNA (ctDNA) of colorectal cancer liver metastases (CRLM) patients after curative resection was rarely investigated. METHODS: A single-center prospective study was performed to investigate the prognostic impact of baseline VAF in ctDNA and matched tumor tissues of CRLM patients after curative resection between May 2019 and May 2021 by the Illumina NovoSeq 6000 platform. The relationship of the tumor burden score (TBS) and the VAF in ctDNA and matched tumor tissues was evaluated by the Pearson correlation method. The survival curves of recurrence-free survival (RFS) and overall survival (OS) were plotted. Factors associated with RFS were calculated using Cox regression analysis, and an integrated prognostic model using significant baseline variables was proposed. RESULTS: There were 121 patients with baseline ctDNA and matched tumor tissues enrolled in the study. A total of 417 mutations spanning 20 genes were identified in baseline tumor tissues of 119/121 (98.3%) cases. The overall mutations in tumor tissues were completely covered by ctDNA in 52 of 121(43.0%) patients. Baseline VAF in ctDNA but not in tumor tissues was significantly correlated to TBS of CRLM (R=0.36, p<0.001). Significantly longer RFS but not OS was observed in patients with lower VAF in ctDNA compared to those with higher one (p<0.001 and p=0.33 respectively). Multivariate Cox regression analysis showed higher VAF in baseline ctDNA was an independent risk factor for RFS. An integrated prognostic model including baseline metastasis location and VAF in ctDNA outperformed the traditional CRS model in predicting RFS. CONCLUSION: Baseline VAF in ctDNA but not in tumor tissues influenced RFS of CRLM patients after curative resection.

4.
Food Chem ; 463(Pt 1): 141059, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39243618

ABSTRACT

Heterocyclic aromatic amines (HAAs) are harmful byproducts in food heating. Therefore, exploring the prediction and generation patterns of HAAs is of great significance. In this study, genetic algorithm (GA) and support vector regression (SVR) are used to establish a prediction model of HAAs based on heating conditions, reveal the influence of heating temperature and time on the precursor and formation of HAAs in roast beef, and study the formation rules of HAAs under different processing conditions. Principal component analysis (PCA) showed that the effect on HAAs generation increases with the increase of heating temperature and time. The GA-SVR model exhibited near-zero absolute errors and regression correlation coefficients (R) close to 1 when predicting HAAs contents. The GA-SVR model can be applied for real-time monitoring of HAAs in grilled beef, providing technical support for controlling hazardous substances and intelligent processing of heat-processed meat products.

5.
Nat Commun ; 15(1): 7796, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39242635

ABSTRACT

Epigenetic modifications are crucial for plant development. EFD (Exine Formation Defect) encodes a SAM-dependent methyltransferase that is essential for the pollen wall pattern formation and male fertility in Arabidopsis. In this study, we find that the expression of DRM2, a de novo DNA methyltransferase in plants, complements for the defects in efd, suggesting its potential de novo DNA methyltransferase activity. Genetic analysis indicates that EFD functions through HB21, as the knockout of HB21 fully restores fertility in efd mutants. DNA methylation and histone modification analyses reveal that EFD represses the transcription of HB21 through epigenetic mechanisms. Additionally, we demonstrate that HB21 directly represses the expression of genes crucial for pollen formation and anther dehiscence, including CalS5, RPG1/SWEET8, CYP703A2 and NST2. Collectively, our findings unveil a double negative regulatory cascade mediated by epigenetic modifications that coordinates anther development, offering insights into the epigenetic regulation of this process.


Subject(s)
Arabidopsis Proteins , Arabidopsis , DNA Methylation , Epigenesis, Genetic , Flowers , Gene Expression Regulation, Plant , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Flowers/genetics , Flowers/growth & development , Pollen/growth & development , Pollen/genetics , Pollen/metabolism , Methyltransferases/metabolism , Methyltransferases/genetics , Mutation , Plants, Genetically Modified
6.
Cancer ; 130(S17): 3054-3066, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39092590

ABSTRACT

Antibody-drug conjugates (ADCs) have demonstrated effectiveness in treating various cancers, particularly exhibiting specificity in targeting human epidermal growth factor receptor 2 (HER2)-positive breast cancer. Recent advancements in phase 3 clinical trials have broadened current understanding of ADCs, especially trastuzumab deruxtecan, in treating other HER2-expressing malignancies. This expansion of knowledge has led to the US Food and Drug Administration's approval of trastuzumab deruxtecan for HER2-positive and HER2-low breast cancer, HER2-positive gastric cancer, and HER2-mutant nonsmall cell lung cancer. Concurrent with the increasing use of ADCs in oncology, there is growing concern among health care professionals regarding the rise in the incidence of interstitial lung disease or pneumonitis (ILD/p), which is associated with anti-HER2 ADC therapy. Studies on anti-HER2 ADCs have reported varying ILD/p mortality rates. Consequently, it is crucial to establish guidelines for the diagnosis and management of ILD/p in patients receiving anti-HER2 ADC therapy. To this end, a panel of Chinese experts was convened to formulate a strategic approach for the identification and management of ILD/p in patients treated with anti-HER2 ADC therapy. This report presents the expert panel's opinions and recommendations, which are intended to guide the management of ILD/p induced by anti-HER2 ADC therapy in clinical practice.


Subject(s)
Immunoconjugates , Lung Diseases, Interstitial , Receptor, ErbB-2 , Humans , Lung Diseases, Interstitial/drug therapy , Lung Diseases, Interstitial/chemically induced , China , Immunoconjugates/therapeutic use , Immunoconjugates/adverse effects , Pneumonia/drug therapy , Female , Consensus , Trastuzumab/therapeutic use , Trastuzumab/adverse effects , Breast Neoplasms/drug therapy , Camptothecin/analogs & derivatives
7.
Chem Sci ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39184303

ABSTRACT

The advent of dual-atom nanozymes (DAzymes) featuring distinctive bimetallic active sites garnered significant attention, representing enhanced iterations of conventional single-atom nanozymes. The quest for an effective and universal strategy to modulate the catalytic activity of DAzymes posed a formidable challenge, yet few published reports addressed this. Herein, we designed and synthesized S-doped Fe/Co DAzymes (S-FeCo-NC) under theoretical guidance and revealed their excellent oxidase-like activity. Experimental and theoretical calculations indicated that the superior oxidase-like activity exhibited by S-FeCo-NC was attributed to the S-doping, which modulated the local electronic structure of the dual-atom active site. This modulation of the local electronic structure significantly optimizes oxygen adsorption energy, thereby accelerating the rate of enzyme-catalyzed reactions. As a proof-of-concept, this study integrated S-FeCo-NC with the cascade inhibition reaction of acetylcholinesterase (AChE) to devise a sensitive analytical platform for detecting organophosphorus pesticides. This study paved the way for elucidating the correlation between the local electronic structure of the active site and enzyme activity, offering novel methodologies and insights for the rational design of DAzymes.

8.
Int J Biol Macromol ; 278(Pt 1): 134597, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39127286

ABSTRACT

The considerable challenge of wound healing remains. In this study, we fabricated a novel multifunctional core-shell nanofibrous scaffold named EGF@BSP-CeO2/PLGA (EBCP), which is composed of Bletilla striata polysaccharide (BSP), Ceria nanozyme (CeO2) and epidermal growth factor (EGF) as the core and poly(lactic-co-glycolic acid) (PLGA) as the shell via an emulsion electrospinning technique. An increase in the BSP content within the scaffolds corresponded to improved wound healing performance. These scaffolds exhibited increased hydrophilicity and porosity and improved mechanical properties and anti-UV properties. EBCP exhibited sustained release, and the degradation rate was <4 % in PBS for 30 days. The superior biocompatibility was confirmed by the MTT assay, hemolysis, and H&E staining. In addition, the in vitro results revealed that, compared with the other groups, the EBCP group presented excellent antioxidant and antibacterial effects. More importantly, the in vivo results indicated that the wound closure rate of the EBCP group reached 94.0 % on day 10 in the presence of H2O2. The results demonstrated that EBCP could comprehensively regulate the wound microenvironment, possess hemostatic abilities, and significantly promote wound healing. In conclusion, the EBCP is promising for facilitating the treatment of infected wounds and represents a potential material for clinical applications.


Subject(s)
Nanofibers , Orchidaceae , Polysaccharides , Tissue Scaffolds , Wound Healing , Wound Healing/drug effects , Nanofibers/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Animals , Tissue Scaffolds/chemistry , Orchidaceae/chemistry , Cerium/chemistry , Cerium/pharmacology , Mice , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Epidermal Growth Factor/pharmacology , Rats , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Male , Porosity , Humans
9.
Appl Environ Microbiol ; 90(8): e0069324, 2024 08 21.
Article in English | MEDLINE | ID: mdl-39058040

ABSTRACT

Symbiotic microorganisms that reside on the host skin serve as the primary defense against pathogens in vertebrates. Specifically, the skin microbiome of bats may play a crucial role in providing resistance against Pseudogymnoascus destructans (Pd), the pathogen causing white-nose syndrome. However, the epidermis symbiotic microbiome and its specific role in resisting Pd in highly resistant bats in Asia are still not well understood. In this study, we collected and characterized skin microbiota samples of 19 Myotis pilosus in China and explored the differences between Pd-positive and negative individuals. We identified inhibitory effects of these bacteria through cultivation methods. Our results revealed that the Simpson diversity index of the skin microbiota for positive individuals was significantly lower than that of negative individuals, and the relative abundance of Pseudomonas was significantly higher in positive bats. Regardless of whether individuals were positive or negative for Pd, the relative abundance of potentially antifungal genera in skin microbiota was high. Moreover, we successfully isolated 165 microbes from bat skin and 41 isolates from positive individuals able to inhibit Pd growth compared to only 12 isolates from negative individuals. A total of 10 genera of Pd-inhibiting bacteria were screened, among which the genera Algoriella, Glutamicibacter, and Psychrobacter were newly discovered as Pd-inhibiting genera. These Pd-inhibiting bacteria metabolized a variety of volatile compounds, including dimethyl trisulfide, dimethyl disulfide, propylene sulfide, 2-undecanone, and 2-nonanone, which were able to completely inhibit Pd growth at low concentrations.IMPORTANCERecently, white-nose syndrome has caused the deaths of millions of hibernating bats, even threatening some with regional extinction. Bats in China with high resistance to Pseudogymnoascus destructans can provide a powerful reference for studying the management of white-nose syndrome and understanding the bats against the pathogen's intrinsic mechanisms. This study sheds light on the crucial role of host symbiotic skin microorganisms in resistance to pathogenic fungi and highlights the potential for harnessing natural defense mechanisms for the prevention and treatment of white-nose syndrome. In addition, this may also provide promising candidates for the development of bioinsecticides and fungicides that offer new avenues for addressing fungal diseases in wildlife and agricultural environments.


Subject(s)
Ascomycota , Bacteria , Chiroptera , Hibernation , Microbiota , Skin , Chiroptera/microbiology , Animals , Skin/microbiology , Ascomycota/isolation & purification , Ascomycota/physiology , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , China , Symbiosis
10.
Acta Psychol (Amst) ; 248: 104380, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38955033

ABSTRACT

This study investigated the effects of different types of short video addiction on social adaptation. The aim of this study was to identify the various types of short video addiction among freshmen and the correlations with career adaptability, insomnia, and depressive symptoms. We recruited 931 freshmen and used latent profile analysis to classify participants based on different characteristics of short video addiction. Based on the results of a short video addiction questionnaire, participants were found to exhibit distinct answer patterns, categorized into five types. Class 1 exhibited minimal signs of addiction. Class 2 displayed fluctuations with stronger tendencies towards withdrawal or escape. Class 3 demonstrated a moderate inability to control cravings for short videos. Class 4 showed fluctuations but with less anxiety and feelings of lost. Finally, Class 5 presented the most pronounced symptoms of short video addiction. Freshmen with varying degrees of short video addiction exhibited significant differences in career adaptability, sleep quality, and depressive symptoms. Class 1 students showed strong career adaptability and sound sleep, whereas Class 5 students had the highest depression rates. Overall, our findings suggest that the characteristics of short video addiction in first-year students also indicate poor social adaptation, which is mainly manifested as weak career adaptability, decreased sleep quality, and depressive symptoms. One way to guide first-year students to adapt to campus life is for educators to provide timely interventions for students with severe short video addiction.


Subject(s)
Depression , Sleep Initiation and Maintenance Disorders , Students , Humans , Male , Female , Young Adult , Students/psychology , Adolescent , Internet Addiction Disorder , Universities , Adult , Surveys and Questionnaires , Social Adjustment
11.
J Synchrotron Radiat ; 31(Pt 5): 1010-1018, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39042579

ABSTRACT

The damage threshold of an Au-coated flat mirror, one of the reflective optics installed on the FEL-2 beamline of the Dalian Coherent Light Source, China, upon far-UV free-electron laser irradiation is evaluated. The surface of the coating is characterized by profilometer and optical microscope. A theoretical approach of the phenomenon is also presented, by application of conventional single-pulse damage threshold calculations, a one-dimensional thermal diffusion model, as well as finite-element analysis with ANSYS.

12.
Sci Adv ; 10(30): eado7438, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39047093

ABSTRACT

Designing highly efficient orally administrated nanotherapeutics with specific inflammatory site-targeting functions in the gastrointestinal tract for ulcerative colitis (UC) management is a noteworthy challenge. Here, we focused on exploring a specific targeting oral nanotherapy, serving as "one stone," for the directed localization of inflammation and the regulation of redox homeostasis, thereby achieving effects against "two birds" for UC treatment. Our designed nanotherapeutic agent OPNs@LMWH (oxidation-sensitive ε-polylysine nanoparticles at low-molecular weight heparin) exhibited specific active targeting effects and therapeutic efficacy simultaneously. Our results indicate that OPNs@LMWH had high integrin αM-mediated immune cellular uptake efficiency and preferentially accumulated in inflamed tissues. We also confirmed its effectiveness in the treatment experiment of colitis in mice by ameliorating oxidative stress and inhibiting the activation of inflammation-associated signaling pathways while simultaneously bolstering the protective mechanisms of the colonic epithelium. Overall, these findings underscore the compelling dual functionalities of OPNs@LMWH, which enable effective oral delivery to inflamed sites, thereby facilitating precise UC management.


Subject(s)
Colitis, Ulcerative , Homeostasis , Integrins , Nanoparticles , Oxidation-Reduction , Animals , Mice , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Nanoparticles/chemistry , Administration, Oral , Integrins/metabolism , Oxidative Stress/drug effects , Humans , Disease Models, Animal , Drug Delivery Systems
13.
Nat Commun ; 15(1): 6043, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025845

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a devastating cancer with dismal prognosis due to distant metastasis, even in the early stage. Using RNA sequencing and multiplex immunofluorescence, here we find elevated expression of mixed lineage kinase domain-like pseudo-kinase (MLKL) and enhanced necroptosis pathway in PDAC from early liver metastasis T-stage (T1M1) patients comparing with non-metastatic (T1M0) patients. Mechanistically, MLKL-driven necroptosis recruits macrophages, enhances the tumor CD47 'don't eat me' signal, and induces macrophage extracellular traps (MET) formation for CXCL8 activation. CXCL8 further initiates epithelial-mesenchymal transition (EMT) and upregulates ICAM-1 expression to promote endothelial adhesion. METs also degrades extracellular matrix, that eventually supports PDAC liver metastasis. Meanwhile, targeting necroptosis and CD47 reduces liver metastasis in vivo. Our study thus reveals that necroptosis facilitates PDAC metastasis by evading immune surveillance, and also suggest that CD47 blockade, combined with MLKL inhibitor GW806742X, may be a promising neoadjuvant immunotherapy for overcoming the T1M1 dilemma and reviving the opportunity for radical surgery.


Subject(s)
CD47 Antigen , Carcinoma, Pancreatic Ductal , Epithelial-Mesenchymal Transition , Extracellular Traps , Liver Neoplasms , Macrophages , Necroptosis , Pancreatic Neoplasms , Protein Kinases , Humans , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Liver Neoplasms/secondary , Liver Neoplasms/metabolism , Animals , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/genetics , Mice , Macrophages/metabolism , Macrophages/immunology , Cell Line, Tumor , CD47 Antigen/metabolism , CD47 Antigen/genetics , Protein Kinases/metabolism , Extracellular Traps/metabolism , Intercellular Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/genetics , Male , Signal Transduction , Female , Acrylamides , Sulfonamides
14.
Sci Total Environ ; 947: 174548, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38972418

ABSTRACT

Microbial carbon use efficiency (CUE) and nitrogen use efficiency (NUE) are crucial parameters reflecting soil C and N sequestration. Concerns about how artificial activities disturb alpine meadow ecosystem are increasing, but the knowledge of variances in microbial CUE and NUE in response to turf storage remains scarce. Here, we conducted a turf storage experiment on the Tibetan Plateau with two common storage methods, laying turfs method (LT) and stacking turfs method (ST). Plant litter, aboveground and belowground biomass declined considerably in the LT and ST than those in natural meadow. Soil pH and available phosphorus were significantly lower, but soil organic carbon, total nitrogen, dissolved organic carbon, and available nitrogen were substantially higher in stored turfs (both ST and LT) than in natural meadow. These results led to a differentiation in nutrient status among treatments. Vetor model indicated a stronger C limitation (vector length > 0.61) in ST than that in the LT and a shift from N to P limitation (vector angle >55°) in all stored turfs. Microbial CUE was prominently higher in the LT than those in the ST, signifying that microbes allocated more exogenous C to self-growth in the LT. Microbial NUE declined considerably in stored turfs, indicating a great proportion of N used for catabolic process instead of anabolic process. Microbial CUE and NUE were tightly linked to nutrient content and availability, enzymatic stoichiometry, microbial traits and plant biomass. Our results suggest that variations in microbial CUE and NUE were indirectly regulated by soil physicochemical properties via mediating nutrient imbalance and enzymatic stoichiometry in stored turfs.


Subject(s)
Carbon , Nitrogen , Soil Microbiology , Soil , Tibet , Carbon/metabolism , Soil/chemistry , Biomass , Grassland
15.
Surg Endosc ; 38(8): 4731-4744, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39009728

ABSTRACT

BACKGROUND: The advancement of laparoscopic technology has broadened the application of laparoscopic pancreaticoduodenectomy (LPD) for treating pancreatic head and ampullary tumors. Despite its benefits, postoperative pancreatic fistula (POPF) and postpancreatectomy hemorrhage (PPH) remain significant complications. Ligamentum teres hepatis wrapping around the gastroduodenal artery (GDA) stump show limitations in reducing POPF and PPH. METHODS: This study retrospectively analyzed patients undergoing LPD from January 2016 to October 2023, We compared the effectiveness of the two-parts wrapping (the ligamentum teres hepatis wrapping of the gastroduodenal artery stump and the omentum flap wrapping of the pancreatojejunal anastomosis) and ligamentum teres hepatis wrapping around the gastroduodenal artery (GDA) in reducing postoperative pancreatic fistula (POPF) and postpancreatectomy hemorrhage (PPH), using propensity score matching for the analysis. RESULTS: A total of 172 patients were analyzed, showing that the two-parts wrapping group significantly reduced the rates of overall and severe complications, POPF, and PPH compared to ligamentum teres hepatis wrapping around the GDA group. Specifically, the study found lower rates of grade B/C POPF and no instances of PPH in the two-parts wrapping group, alongside shorter postoperative hospital stays and drainage removal times. These benefits were particularly notable in patients with soft pancreatic textures and pancreatic duct diameters of < 3 mm. CONCLUSION: The two-parts wrapping technique significantly reduce the risks of POPF and PPH in LPD, offering a promising approach for patients with soft pancreas and pancreatic duct diameter of < 3 mm.


Subject(s)
Laparoscopy , Pancreatic Fistula , Pancreaticoduodenectomy , Postoperative Complications , Humans , Pancreaticoduodenectomy/methods , Pancreaticoduodenectomy/adverse effects , Male , Female , Retrospective Studies , Laparoscopy/methods , Middle Aged , Postoperative Complications/prevention & control , Postoperative Complications/etiology , Aged , Pancreatic Fistula/prevention & control , Pancreatic Fistula/etiology , Postoperative Hemorrhage/prevention & control , Postoperative Hemorrhage/etiology , Pancreatic Neoplasms/surgery , Treatment Outcome , Surgical Flaps
16.
J Immunother Cancer ; 12(7)2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39067875

ABSTRACT

BACKGROUND: This study comprehensively investigates the association between the expression of nicotinamide N-methyltransferase (NNMT) and clinical outcomes of urothelial bladder cancer (UBC), as well as the molecular mechanisms by which NNMT in cancer-associated fibroblast (CAF) modulates tumor progression and immunotherapy resistance in UBC. METHODS: Single-cell transcriptomic analyses, immunohistochemical and immunofluorescence assays were performed on bladder cancer samples to validate the relationship between NNMT expression and clinical outcomes. A series of experiments, including chromatin immunoprecipitation assay, liquid chromatography tandem mass spectrometry assay, and CRISPR‒Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated protein 9) knockout, together with in vivo models, have been established to determine the molecular functions of NNMT in CAFs in UBC. RESULTS: We demonstrated that elevated expression of the nicotinamide adenine dinucleotide (NAD+) metabolism enzyme NNMT in CAFs (NNMT+ CAFs) was significantly associated with non-response to programmed death-ligand 1 (PD-L1) blockade immunotherapy in patients with UBC and predicted the unfavorable prognosis of UBC in two independent large cohorts. Targeting NNMT using the inhibitor 5-Amino-1-methylquinolinium iodide significantly reduced tumor growth and enhanced the apoptotic effects of the anti-PD-L1 antibody in UBC mouse models. Mechanistically, NNMT+ CAFs recruit tumor-associated macrophages via epigenetic reprogramming of serum amyloid A (SAA) to drive tumor cell proliferation and confer resistance to programmed death-1/PD-L1 blockade immunotherapy. CONCLUSIONS: NNMT+ CAFs were significantly associated with non-response to PD-L1 blockade immunotherapy in patients with UBC. Elevated NNMT, specifically in CAFs, upregulates SAA expression and enhances the recruitment and differentiation of macrophages in the tumor microenvironment, thereby directly or indirectly promoting tumor progression and conferring resistance to immunotherapies in bladder cancer.


Subject(s)
Cancer-Associated Fibroblasts , Immunotherapy , Macrophages , Nicotinamide N-Methyltransferase , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/immunology , Urinary Bladder Neoplasms/genetics , Humans , Cancer-Associated Fibroblasts/metabolism , Mice , Animals , Nicotinamide N-Methyltransferase/metabolism , Immunotherapy/methods , Macrophages/metabolism , Macrophages/immunology , NAD/metabolism , Drug Resistance, Neoplasm , Female , Disease Progression , Male , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology
17.
Sci Total Environ ; 946: 174124, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38909790

ABSTRACT

Resource limitation for soil microorganisms is the crucial factor in nutrient cycling and vegetation development, which are especially important in arid climate. Given that rock fragments strongly impact hydrologic and geochemical processes in arid areas, we hypothesized that microbial resource (C and N) limitation will increase along the rock fragment content (RFC) gradient. We conducted a field experiment in Minjiang river arid valleys with four RFC content (0 %, 25 %, 50 %, and 75 %, V V-1) and four vegetation types (Artemisia vestita, Bauhinia brachycarpa, Sophora davidii, and the soil without plants). Activities of C (ß-1,4-glucosidase, BG), N (ß-1,4-N-acetyl-glucosaminidase, NAG; L-leucine aminopeptidase, LAP), and P (acid phosphatase, ACP) acquiring enzymes were investigated to assess the limitations by C, N or P. In unplanted soil, the C acquiring enzyme activity decreased by 43 %, but N acquiring enzyme activity increased by 72 % in 75 % RFC than those in rock-free soils (0 % RFC). Increasing RFC reduced C:N and C:P enzymatic ratios, as well as vector length and vector angle (< 45°). Plants increased the activities of C and N acquiring enzymes in soils, as well as C:P and N:P enzyme activities, as well as vector length (by 5.6 %-25 %), but decreased vector angle (by 13 %-21 %). Enzyme stoichiometry was dependent on biotic and abiotic factors, such as soil water content, soil C:N, and total content of phospholipid fatty acids, reflecting microbial biomass content. Increased RFC shifted enzymatic stoichiometry toward lower C but stronger N limitation for microorganisms. Vegetation increased microbial C and N limitation, and impacted the enzymatic activities and stoichiometry depending on shrub functional groups. Consequently, the direct effects of vegetation, nutrient availability and microbial biomass content, as well as indirect effects of soil properties collectively increased microbial resource limitations along the RFC gradient.


Subject(s)
Nitrogen , Soil Microbiology , Soil , Soil/chemistry , Nitrogen/metabolism , Nitrogen/analysis , China , Carbon/metabolism
18.
Fitoterapia ; 177: 106102, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38945494

ABSTRACT

As the main effect substances of tobacco products, the physiological effects of nicotine have attracted the attention of researchers, especially in recent years, the discussion on the benefits and harms of nicotine (or tobacco products) has become increasingly fierce. In this review, the structure, distribution and physiological effects of nicotinic acetylcholine receptor (nAchR) are summarized. The absorption, distribution, metabolism and excretion of nicotine in the body were introduced. Further, the positive effects of low-dose and short-term nicotine exposure on mitochondrial function regulation, stem cell proliferation and differentiation, nervous system protection and analgesia were elucidated. At the same time, it is also discussed that high-dose and long-term nicotine exposure can activate the oxidative stress effect, mediate abnormal epigenetic modification, and enhance the immune inflammatory response, and then produce negative effects on the body. To sum up, this review suggests that there is a "double-edged sword" effect of nicotine, which on the one hand helps people to understand the physiological effects of nicotine more comprehensively and carefully, and on the other hand provides some theoretical basis for the rational use of nicotine and the innovative development of related products.


Subject(s)
Nicotine , Receptors, Nicotinic , Nicotine/adverse effects , Humans , Receptors, Nicotinic/drug effects , Receptors, Nicotinic/metabolism , Animals , Oxidative Stress/drug effects , Mitochondria/drug effects , Epigenesis, Genetic/drug effects
19.
J Inflamm (Lond) ; 21(1): 22, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877444

ABSTRACT

BACKGROUND: YTHDC1, a key m(6)A nuclear reader, plays a crucial role in regulating mRNA splicing, export, and stability. However, the functional significance and regulatory mechanisms of YTHDC1 in inflammatory bowel disease (IBD) remain to be explored. METHODS: We established a dextran sulfate sodium (DSS)-induced murine colitis model in vivo and LPS/IFN-γ-stimulated macrophage inflammation in vitro. The expression of YTHDC1 was determined. Colocalization of YTHDC1 and macrophages was assayed by immunofluorescence staining. LV-YTHDC1 or shYTHDC1 lentiviruses were applied for YTHDC1 overexpression or inhibition. For NF-κB inhibition, JSH-23 was utilized. The interaction of YTHDC1 and Beclin1 mRNA was determined by RIP, and the m6A modification of Beclin1 was confirmed by MeRIP. RESULTS: In DSS-induced colitis and LPS/IFN-γ-treated RAW264.7 macrophages, we observed a significant downregulation of YTHDC1. Overexpression of YTHDC1 resulted in decreased levels of iNOS, CD86, and IL-6 mRNA, along with inhibited NF-κB activation in LPS/IFN-γ-treated RAW264.7 cells. Conversely, downregulation of YTHDC1 promoted iNOS expression and inhibited autophagy. Additionally, the effect of YTHDC1 knockdown on CD86 and IL-6 mRNA induced by LPS/IFN-γ was abolished by the NF-κB inhibitor JSH-23. Mechanistically, YTHDC1 interacted with Beclin1 mRNA, thereby stabilizing Beclin1 mRNA and enhancing Beclin1 expression and autophagy. These effects ultimately led to the inhibition of NF-κB signaling in LPS/IFN-γ-challenged macrophages. CONCLUSIONS: YTHDC1 inhibited the macrophage-mediated inflammatory response by stabilizing Beclin1 mRNA, which may be a potential therapeutic target for the treatment of IBD.

20.
Clin Chim Acta ; 560: 119751, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38830523

ABSTRACT

BACKGROUND: The metabolic or proliferative abnormalities that are characteristic of tumor cells can lead to abnormal fibrinolysis or coagulation system activity, with certain tumors exhibiting hypercoagulability or existing in a fibrinolytic state. However, the utility of biomarkers of coagulation and fibrinolysis when seeking to differentiate between benign gallbladder disease and malignant gallbladder tumors remains uncertain. METHODS: This study included a total of 81 patients with benign gallbladder polyps and 94 patients with malignant gallbladder tumors. Pre-biopsy or pretreatment levels of PT, APTT, FIB, D-dimer, FDP, PLT, PIC, TAT, TM, and t-PAIC from these patients were compared using Mann-Whitney tests. The baseline data of the patients were analyzed using chi-square tests, and the diagnostic utility of these biomarkers in distinguishing between benign and malignant gallbladder lesions was evaluated using ROC curves, and Spearman correlation analysis was employed to assess the correlation between these indicators and tumor parameters. RESULTS: The average age of malignant gallbladder tumor group was higher than benign gallbladder polyp group. And the base line analysis showed that there was a statistic difference in age, history of smoking, drinking, biliary tract disease, BMI of over weight between these two groups. In patients with malignant gallbladder tumors, FIB, D-dimer, FDP, PIC, TAT, TM, and t-PAIC levels were significantly elevated relative to those in patients affected by benign gallbladder polyp. The AUC for FIB, D-dimer, and FDP was 0.8469, 0.6514, 0.5950, while for PIC, TAT, TM, t-PAIC and four biomarker combined diagnosed was 0.8455, 0.6554, 0.7130, 0.6806, and 0.8859. Among these, TM was associated with the vascular invasion of tumor patients; TAT and t-PAIC were associated with neural invasion; D-dimer and FDP were related to the maximum tumor diameter; and FDP had a certain correlation with the tumor stage. CONCLUSIONS: In gallbladder tumor patients, conventional coagulation metrics like FIB, D-dimer, and FDP, as well as newer thrombotic indicators such as PIC, TAT, TM, and t-PAIC, were obviously increased. Correlations with tumor parameters suggested their potential as biomarkers to distinguish benign from malignant gallbladder growths.


Subject(s)
Fibrinolysis , Gallbladder Neoplasms , Humans , Gallbladder Neoplasms/blood , Gallbladder Neoplasms/diagnosis , Gallbladder Neoplasms/pathology , Female , Male , Cross-Sectional Studies , Middle Aged , Aged , Blood Coagulation , Adult , Biomarkers, Tumor/blood , Diagnosis, Differential , Biomarkers/blood , Fibrin Fibrinogen Degradation Products/analysis , Fibrin Fibrinogen Degradation Products/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL