Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 187
Filter
1.
MedComm (2020) ; 5(6): e615, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38881676

ABSTRACT

Spike-protein-based pseudotyped viruses were used to evaluate vaccines during the COVID-19 pandemic. However, they cannot be used to evaluate the envelope (E), membrane (M), and nucleocapsid (N) proteins. The first generation of virus-like particle (VLP) pseudotyped viruses contains these four structural proteins, but their titers for wild-type severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are relatively low, even lower for the omicron variant, rendering them unsuitable for neutralizing antibody detection. By optimizing the spike glycoprotein signal peptide, substituting the complexed M and E proteins with SARS-COV-1, optimizing the N protein with specific mutations (P199L, S202R, and R203M), and truncating the packaging signal, PS9, we increased the titer of the wild-type VLP pseudotyped virus over 100-fold, and successfully packaged the omicron VLP pseudotyped virus. The SARS-CoV-2 VLP pseudotyped viruses maintained stable titers, even through 10 freeze-thaw cycles. The key neutralization assay parameters were optimized, including cell type, cell number, and viral inoculum. The assay demonstrated minimal variation in both intra- and interassay results, at 11.5% and 11.1%, respectively. The correlation between the VLP pseudotyped virus and the authentic virus was strong (r = 0.9). Suitable for high-throughput detection of various mutant strains in clinical serum. In summary, we have developed a reliable neutralization assay for SARS-CoV-2 based on VLP pseudotyped virus.

2.
Heliyon ; 10(11): e32139, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38868014

ABSTRACT

SARS-CoV-2 evolves gradually to cause COVID-19 epidemic. One of driving forces of SARS-CoV-2 evolution might be activation of apolipoprotein B mRNA editing catalytic subunit-like protein 3 (APOBEC3) by inflammatory factors. Here, we aimed to elucidate the effect of the APOBEC3-related viral mutations on the infectivity and immune evasion of SARS-CoV-2. The APOBEC3-related C > U mutations ranked as the second most common mutation types in the SARS-CoV-2 genome. mRNA expression of APOBEC3A (A3A), APOBEC3B (A3B), and APOBEC3G (A3G) in peripheral blood cells increased with disease severity. A3B, a critical member of the APOBEC3 family, was significantly upregulated in both severe and moderate COVID-19 patients and positively associated with neutrophil proportion and COVID-19 severity. We identified USP18 protein, a key molecule centralizing the protein-protein interaction network of key APOBEC3 proteins. Furthermore, mRNA expression of USP18 was significantly correlated to ACE2 and TMPRSS2 expression in the tissue of upper airways. Knockdown of USP18 mRNA significantly decreased A3B expression. Ectopic expression of A3B gene increased SARS-CoV-2 infectivity. C > U mutations at S371F, S373L, and S375F significantly conferred with the immune escape of SARS-CoV-2. Thus, APOBEC3, whose expression are upregulated by inflammatory factors, might promote SARS-CoV-2 evolution and spread via upregulating USP18 level and facilitating the immune escape. A3B and USP18 might be therapeutic targets for interfering with SARS-CoV-2 evolution.

3.
Hum Vaccin Immunother ; 20(1): 2343192, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38745409

ABSTRACT

To summarize the distribution of types of human papillomavirus (HPV) associated with HPV-related diseases and investigate the potential causes of high prevalence of HPV 52 and 58 by summarizing the prevalence of lineages, sub-lineages, and mutations among Chinese women. We searched PubMed, EMBASE, CNKI, and WanFang from January, 2012 to June, 2023 to identify all the eligible studies. We excluded patients who had received HPV vaccinations. Data were summarized in tables and cloud/rain maps. A total of 102 studies reporting HPV distribution and 15 studies reporting HPV52/HPV58 variants were extracted. Among Chinese women, the top five prevalent HPV types associated with cervical cancer (CC) were HPV16, 18, 58, 52, and 33. In patients with vaginal cancers and precancerous lesions, the most common HPV types were 16 and 52 followed by 58. For women with condyloma acuminatum (CA), the most common HPV types were 11 and 6. In Chinese women with HPV infection, lineage B was the most prominently identified for HPV52, and lineage A was the most common for HPV58. In addition to HPV types 16, which is prevalent worldwide, our findings revealed the unique high prevalence of HPV 52/58 among Chinese women with HPV-related diseases. HPV 52 variants were predominantly biased toward lineage B and sub-lineage B2, and HPV 58 variants were strongly biased toward lineage A and sub-lineage A1. Further investigations on the association between the high prevalent lineage and sub-lineage in HPV 52/58 and the risk of cancer risk are needed. Our findings underscore the importance of vaccination with the nine-valent HPV vaccine in China.


Subject(s)
Papillomavirus Infections , Uterine Cervical Neoplasms , Humans , Female , Papillomavirus Infections/epidemiology , Papillomavirus Infections/virology , China/epidemiology , Prevalence , Uterine Cervical Neoplasms/virology , Uterine Cervical Neoplasms/epidemiology , Papillomaviridae/genetics , Papillomaviridae/classification , Genotype , Vaginal Neoplasms/virology , Vaginal Neoplasms/epidemiology , Condylomata Acuminata/virology , Condylomata Acuminata/epidemiology
4.
iScience ; 27(6): 109941, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38812543

ABSTRACT

The intact proviral DNA assay (IPDA) based on droplet digital PCR was developed to identify intact proviral DNA and quantify HIV-1 latency reservoirs in patients infected with HIV-1. However, the genetic characteristics of different HIV-1 subtypes are non-consistent due to their high mutation and recombination rates. Here, we identified that the IPDA based on the sequences features of an HIV-1 subtype could not effectively detect different HIV-1 subtypes due to the high diversity of HIV-1. Furthermore, we demonstrated that mutations in env gene outside the probe binding site affect the detection efficiency of IPDA. Since mutations in env gene outside the probe binding site may also lead to the formation of stop codons, thereby preventing the formation of viruses and ultimately overestimating the number of HIV-1 latency reservoirs, it is important to address the effect of mutations on the IPDA.

5.
Vaccines (Basel) ; 12(5)2024 May 18.
Article in English | MEDLINE | ID: mdl-38793805

ABSTRACT

Since the emergence of COVID-19, extensive research efforts have been undertaken to accelerate the development of multiple types of vaccines to combat the pandemic. These include inactivated, recombinant subunit, viral vector, and nucleic acid vaccines. In the development of these diverse vaccines, appropriate methods to assess vaccine immunogenicity are essential in both preclinical and clinical studies. Among the biomarkers used in vaccine evaluation, the neutralizing antibody level serves as a pivotal indicator for assessing vaccine efficacy. Neutralizing antibody detection methods can mainly be classified into three types: the conventional virus neutralization test, pseudovirus neutralization test, and surrogate virus neutralization test. Importantly, standardization of these assays is critical for their application to yield results that are comparable across different laboratories. The development and use of international or regional standards would facilitate assay standardization and facilitate comparisons of the immune responses induced by different vaccines. In this comprehensive review, we discuss the principles, advantages, limitations, and application of different SARS-CoV-2 neutralization assays in vaccine clinical trials. This will provide guidance for the development and evaluation of COVID-19 vaccines.

7.
Viruses ; 16(5)2024 05 11.
Article in English | MEDLINE | ID: mdl-38793644

ABSTRACT

Neutralizing antibodies targeting the spike (S) protein of SARS-CoV-2, elicited either by natural infection or vaccination, are crucial for protection against the virus. Nonetheless, the emergence of viral escape mutants presents ongoing challenges by contributing to breakthrough infections. To define the evolution trajectory of SARS-CoV-2 within the immune population, we co-incubated replication-competent rVSV/SARS-CoV-2/GFP chimeric viruses with sera from COVID-19 convalescents. Our findings revealed that the E484D mutation contributes to increased viral resistant against both convalescent and vaccinated sera, while the L1265R/H1271Y double mutation enhanced viral infectivity in 293T-hACE2 and Vero cells. These findings suggest that under the selective pressure of polyclonal antibodies, SARS-CoV-2 has the potential to accumulate mutations that facilitate either immune evasion or greater infectivity, facilitating its adaption to neutralizing antibody responses. Although the mutations identified in this study currently exhibit low prevalence in the circulating SARS-CoV-2 populations, the continuous and meticulous surveillance of viral mutations remains crucial. Moreover, there is an urgent necessity to develop next-generation antibody therapeutics and vaccines that target diverse, less mutation-prone antigenic sites to ensure more comprehensive and durable immune protection against SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Mutation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Humans , COVID-19/immunology , COVID-19/virology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/immunology , Antibodies, Viral/blood , Animals , Chlorocebus aethiops , Vero Cells , Immune Evasion , HEK293 Cells
8.
Viruses ; 16(4)2024 04 01.
Article in English | MEDLINE | ID: mdl-38675896

ABSTRACT

Neutralizing antibodies (NtAbs) against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are indicators of vaccine efficacy that enable immunity surveillance. However, the rapid mutation of SARS-CoV-2 variants prevents the timely establishment of standards required for effective XBB vaccine evaluation. Therefore, we prepared four candidate standards (No. 11, No. 44, No. 22, and No. 33) using plasma, purified immunoglobulin, and a broad-spectrum neutralizing monoclonal antibody. Collaborative calibration was conducted across nine Chinese laboratories using neutralization methods against 11 strains containing the XBB and BA.2.86 sublineages. This study demonstrated the reduced neutralization potency of the first International Standard antibodies to SARS-CoV-2 variants of concern against XBB variants. No. 44 displayed broad-spectrum neutralizing activity against XBB sublineages, effectively reduced interlaboratory variability for nearly all XBB variants, and effectively minimized the geometric mean titer (GMT) difference between the live and pseudotyped virus. No. 22 showed a broader spectrum and higher neutralizing activity against all strains but failed to reduce interlaboratory variability. Thus, No. 44 was approved as a National Standard for NtAbs against XBB variants, providing a unified NtAb measurement standard for XBB variants for the first time. Moreover, No. 22 was approved as a national reference reagent for NtAbs against SARS-CoV-2, offering a broad-spectrum activity reference for current and potentially emerging variants.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Neutralization Tests , SARS-CoV-2 , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Humans , Antibodies, Viral/immunology , Antibodies, Viral/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , COVID-19/immunology , COVID-19/virology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/genetics , COVID-19 Vaccines/immunology , China , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics
9.
Front Microbiol ; 15: 1372069, 2024.
Article in English | MEDLINE | ID: mdl-38577684

ABSTRACT

Introduction: Hepatitis E virus (HEV), with heightened virulence in immunocompromised individuals and pregnant women, is a pervasive threat in developing countries. A globaly available vaccine against HEV is currently lacking. Methods: We designed a multi-epitope vaccine based on protein ORF2 and ORF3 of HEV using immunoinformatics. Results: The vaccine comprised 23 nontoxic, nonallergenic, soluble peptides. The stability of the docked peptide vaccine-TLR3 complex was validated by molecular dynamic simulations. The induction of effective cellular and humoral immune responses by the multi-peptide vaccine was verified by simulated immunization. Discussion: These findings provide a foundation for future HEV vaccine studies.

10.
MedComm (2020) ; 5(4): e517, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38525106

ABSTRACT

Regarding the extensive global attention to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that constitutes an international public health emergency, pseudovirus neutralization assays have been widely applied due to their advantages of being able to be conducted in biosafety level 2 laboratories and having a high safety factor. In this study, by adding a blue fluorescent protein (AmCyan) gene to the HIV system pSG3-△env backbone plasmid HpaI and truncating the C-terminal 21 amino acids of the SARS-CoV-2 spike protein (S), high-titer SARS-CoV-2-Sdel21-AmCyan fluorescent pseudovirus was successfully packaged. The fluorescent pseudovirus was used to establish a neutralization assay in a 96-well plate using 293T cells stably transfected with the AF cells. Then, parameters such as the ratio of backbone and membrane plasmid, sensitive cells, inoculation of cells and virus, as well as incubation and detection time were optimized. The pseudovirus neutralization assay demonstrated high accuracy, sensitivity, repeatability, and a strong correlation with the luminescent pseudovirus neutralization assay. Additionally, we scaled up the neutralizing antibody determination method by increasing the plate size from 96 wells to 384 wells. We have established a robust fluorescent pseudotyped virus neutralization assay for SARS-CoV-2 using the HIV system, providing a foundation for serum neutralization antibody detection, monoclonal antibody screening, and vaccine development.

11.
Elife ; 122024 Mar 25.
Article in English | MEDLINE | ID: mdl-38526940

ABSTRACT

Marburg virus (MARV) is one of the filovirus species that cause deadly hemorrhagic fever in humans, with mortality rates up to 90%. Neutralizing antibodies represent ideal candidates to prevent or treat virus disease. However, no antibody has been approved for MARV treatment to date. In this study, we identified a novel human antibody named AF-03 that targeted MARV glycoprotein (GP). AF-03 possessed a high binding affinity to MARV GP and showed neutralizing and protective activities against the pseudotyped MARV in vitro and in vivo. Epitope identification, including molecular docking and experiment-based analysis of mutated species, revealed that AF-03 recognized the Niemann-Pick C1 (NPC1) binding domain within GP1. Interestingly, we found the neutralizing activity of AF-03 to pseudotyped Ebola viruses (EBOV, SUDV, and BDBV) harboring cleaved GP instead of full-length GP. Furthermore, NPC2-fused AF-03 exhibited neutralizing activity to several filovirus species and EBOV mutants via binding to CI-MPR. In conclusion, this work demonstrates that AF-03 represents a promising therapeutic cargo for filovirus-caused disease.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Marburgvirus , Humans , Antibodies, Viral , Molecular Docking Simulation , Glycoproteins , Hemorrhagic Fever, Ebola/prevention & control , Ebolavirus/chemistry
13.
J Med Virol ; 96(1): e29417, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38258345

ABSTRACT

The EG.5.1 variant of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been prevalent since mid-July 2023 in the United States and China. The variant BA.2.86 has become a major concern because it is 34 mutations away from the parental variant BA.2 and >30 mutations from XBB.1.5. There is an urgent need to evaluate whether the immunity of the population and current vaccines are protective against EG.5.1 and BA.2.86. Based on a cohort of two breakthrough-infected groups, the levels of neutralizing antibodies (NAbs) against different subvariants were measured using pseudovirus-based neutralization assays. XBB.1.5, EG.5.1, and BA.2.86 are comparably immune-evasive from neutralization by the plasma of individuals recovered from BA.5 infection (BA.5-convalescent) or XBB.1.9.2/XBB.1.5 infection following BA.5 infection (BA.5-XBB-convalescent). NAb levels against EG.5.1 and BA.2.86 subvariants remained >120 geometric mean titers (GMTs) in BA.5-XBB-convalescent individuals 2 months postinfection but were <40 GMTs in BA.5-convalescent individuals. Furthermore, the XBB-targeting messenger RNA (mRNA) vaccine RQ3033 induced higher levels of NAbs against XBB.1.5, EG.5.1, and BA.2.86 than against BA.5-XBB infection. The results suggest that BA.2.86 and EG.5.1 are unlikely to cause more severe concerns than the currently circulating XBB subvariants and that the XBB.1.5-targeting mRNA vaccine tested has promising protection against EG.5.1 and BA.2.86.


Subject(s)
Antibodies, Neutralizing , Plasma , Humans , China , Immune Evasion , Mutation , RNA, Messenger , SARS-CoV-2/genetics
14.
J Med Virol ; 96(1): e29314, 2024 01.
Article in English | MEDLINE | ID: mdl-38163276

ABSTRACT

SARS-CoV-2 breakthrough infections in vaccinated individuals underscore the threat posed by continuous mutating variants, such as Omicron, to vaccine-induced immunity. This necessitates the search for broad-spectrum immunogens capable of countering infections from such variants. This study evaluates the immunogenicity relationship among SARS-CoV-2 variants, from D614G to XBB, through Guinea pig vaccination, covering D614G, Alpha, Beta, Gamma, Delta, BA.1, BA.2, BA.2.75, BA.2.75.2, BA.5, BF.7, BQ.1.1, and XBB, employing three immunization strategies: three-dose monovalent immunogens, three-dose bivalent immunogens, and a two-dose vaccination with D614G followed by a booster immunization with a variant strain immunogen. Three distinct immunogenicity clusters were identified: D614G, Alpha, Beta, Gamma, and Delta as cluster 1, BA.1, BA.2, and BA.2.75 as cluster 2, BA.2.75.2, BA.5, BF.7, BQ.1.1, and XBB as cluster 3. Broad-spectrum protection could be achieved through a combined immunization strategy using bivalent immunogens or D614G and XBB, or two initial D614G vaccinations followed by two XBB boosters. A comparison of neutralizing antibody levels induced by XBB boosting and equivalent dosing of D614G and XBB revealed that the XBB booster produced higher antibody levels. The study suggests that vaccine antigen selection should focus on the antigenic alterations among variants, eliminating the need for updating vaccine components for each variant.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Animals , Guinea Pigs , SARS-CoV-2/genetics , COVID-19/prevention & control , Antibodies, Neutralizing , Cluster Analysis , Vaccines, Combined , Antibodies, Viral
15.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166964, 2024 02.
Article in English | MEDLINE | ID: mdl-37995774

ABSTRACT

Marburg virus (MARV), one member of the Filoviridae family, cause sporadic outbreaks of hemorrhagic fever with high mortality rates. No countermeasures are currently available for the prevention or treatment of MARV infection. Monoclonal antibodies (mAbs) are promising candidates to display high neutralizing activity against MARV infection in vitro and in vivo. Recently, growing evidence has shown that immune effector function including antibody-dependent cell-mediated cytotoxicity (ADCC) is also required for in vivo efficacy of a panel of antibodies. Glyco-engineered methods are widely utilized to augment ADCC function of mAbs. In this study, we generated a fucose-knockout MARV GP-specific mAb named AF-04 and showed that afucosylation dramatically increased its binding affinity to polymorphic FcγRIIIa (F176/V176) compared with the parental AF-03. Accordingly, AF-04-mediated NK cell activation and NFAT expression downstream of FcγRIIIa in effector cells were also augmented. In conclusion, this work demonstrates that AF-04 represents a novel avenue for the treatment of MARV-caused disease.


Subject(s)
Marburgvirus , Antibodies, Monoclonal/therapeutic use
16.
J Clin Lab Anal ; 38(1-2): e24996, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38131260

ABSTRACT

BACKGROUND: The detection and accurate genotyping of human papillomavirus (HPV) infection is critical for preventing and effectively treating cervical cancer. METHODS: A multiplex fluorescent polymerase chain reaction (PCR) coupled with a capillary electrophoresis method was developed for the simultaneous detection of the 16 most prevalent HPV genotypes. Twenty-five pairs of primers were ultimately selected to ensure that both E and L regions of nine HPV genotypes, as well as the E regions of seven HPV genotypes could be accurately amplified. RESULTS: This method enables the simultaneous detection and differentiation of 16 HPV genotypes in a single closed-tube reaction, accurately distinguishing products with molecular weight differences >1 bp through capillary electrophoresis. This method demonstrated exceptional accuracy, specificity, and repeatability with a detection limit of 10 copies/µL for all 16 HPV genotypes. Furthermore, 152 cervical swab specimens were obtained to compare the disparities between this approach and Cobas 4800 HPV detection method. The concordance rate and κ value were 90.1% and 0.802, respectively, indicating a high level of agreement. The established detection method was successfully applied to cervical swab specimens for determining HPV genotypes across all levels of cervical lesions, HPV52, 56, 16, and 59 were found to be most prevalent with infection rates of 10.8%, 9.1%, 6.5%, and 6.2%, respectively. CONCLUSIONS: This study has successfully established a detection method capable of simultaneously identifying 16 HPV genotypes. This approach can be further applied to HPV vaccine research and surveillance, with the potential for broad applications.


Subject(s)
Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Human Papillomavirus Viruses , Papillomavirus Infections/diagnosis , Sensitivity and Specificity , Multiplex Polymerase Chain Reaction/methods , Genotype , Uterine Cervical Neoplasms/diagnosis , Electrophoresis, Capillary , Papillomaviridae/genetics , DNA, Viral/genetics
17.
Nature ; 624(7992): 630-638, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38093012

ABSTRACT

The COVID-19 pandemic has fostered major advances in vaccination technologies1-4; however, there are urgent needs for vaccines that induce mucosal immune responses and for single-dose, non-invasive administration4-6. Here we develop an inhalable, single-dose, dry powder aerosol SARS-CoV-2 vaccine that induces potent systemic and mucosal immune responses. The vaccine encapsulates assembled nanoparticles comprising proteinaceous cholera toxin B subunits displaying the SARS-CoV-2 RBD antigen within microcapsules of optimal aerodynamic size, and this unique nano-micro coupled structure supports efficient alveoli delivery, sustained antigen release and antigen-presenting cell uptake, which are favourable features for the induction of immune responses. Moreover, this vaccine induces strong production of IgG and IgA, as well as a local T cell response, collectively conferring effective protection against SARS-CoV-2 in mice, hamsters and nonhuman primates. Finally, we also demonstrate a mosaic iteration of the vaccine that co-displays ancestral and Omicron antigens, extending the breadth of antibody response against co-circulating strains and transmission of the Omicron variant. These findings support the use of this inhaled vaccine as a promising multivalent platform for fighting COVID-19 and other respiratory infectious diseases.


Subject(s)
COVID-19 Vaccines , Immunity, Mucosal , Animals , Cricetinae , Humans , Mice , Administration, Inhalation , Aerosols , Antibodies, Viral/immunology , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Antigens, Viral/immunology , Cholera Toxin , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Immunity, Mucosal/immunology , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Nanoparticles , Powders , Primates/virology , SARS-CoV-2/classification , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Vaccination , Capsules
19.
Nat Commun ; 14(1): 8398, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110357

ABSTRACT

The spread of many infectious diseases relies on aerosol transmission to the respiratory tract. Here we design an intranasal mask comprising a positively-charged thermosensitive hydrogel and cell-derived micro-sized vesicles with a specific viral receptor. We show that the positively charged hydrogel intercepts negatively charged viral aerosols, while the viral receptor on vesicles mediates the entrapment of viruses for inactivation. We demonstrate that when displaying matched viral receptors, the intranasal masks protect the nasal cavity and lung of mice from either severe acute respiratory syndrome coronavirus 2 or influenza A virus. With computerized tomography images of human nasal cavity, we further conduct computational fluid dynamics simulation and three-dimensional printing of an anatomically accurate human nasal cavity, which is connected to human lung organoids to generate a human respiratory tract model. Both simulative and experimental results support the suitability of intranasal masks in humans, as the likelihood of viral respiratory infections induced by different variant strains is dramatically reduced.


Subject(s)
Respiratory Aerosols and Droplets , Virus Diseases , Humans , Animals , Mice , Respiratory System , Administration, Intranasal , Hydrogels , Aerosols
20.
Pediatr Infect Dis J ; 42(12): 1136-1142, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37967148

ABSTRACT

BACKGROUND: It is important to extend the indication of severe acute respiratory syndrome coronavirus 2 vaccine to children to improve the vaccine intake rate and reduce infection in this population. METHODS: In 2 phase 1 and phase 2 randomized, double-blind and placebo-controlled trials, 84 and 480 Chinese healthy children 3 to 17 years old were enrolled, respectively, and randomized in 3:1 ratio to receive 2 doses of a severe acute respiratory syndrome coronavirus 2 inactivated vaccine, KCONVAC or placebo. The 2 doses were given 28 days apart. Adverse events (AEs) were recorded through Day 28 after each dosing. Live virus neutralizing antibody and receptor binding domain antibody (RBD-IgG) were tested before vaccination and after the second dose. RESULTS: Two doses of the vaccine, KCONVAC, elicited geometric mean titers of 142-150 for neutralizing antibody and 4154-4253 for RBD-IgG 28 days after the second dose. Seroconversion rates were 100% after 2 doses for both antibodies in both trials. The predominant AEs were injection-site pain, cough and fever. Most AEs were grade 1 or 2 in intensity. Five participants reported 6 vaccination-unrelated serious AEs in the phase 2 trial. CONCLUSIONS: Two doses of this study vaccine, KCONVAC, were well tolerated and immunogenic in children 3 to 17 years of age.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunogenicity, Vaccine , Adolescent , Child , Child, Preschool , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Double-Blind Method , East Asian People , Immunoglobulin G , SARS-CoV-2 , Vaccines, Inactivated/adverse effects , Vaccines, Inactivated/immunology , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...