Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Genome Biol Evol ; 14(8)2022 08 03.
Article in English | MEDLINE | ID: mdl-35881674

ABSTRACT

Djulis (Chenopodium formosanum Koidz.) is a crop grown since antiquity in Taiwan. It is a BCD-genome hexaploid (2n = 6x = 54) domesticated form of lambsquarters (C. album L.) and a relative of the allotetraploid (AABB) C. quinoa. As with quinoa, djulis seed contains a complete protein profile and many nutritionally important vitamins and minerals. While still sold locally in Taiwanese markets, its traditional culinary uses are being lost as diets of younger generations change. Moreover, indigenous Taiwanese peoples who have long safeguarded djulis are losing their traditional farmlands. We used PacBio sequencing and Hi-C-based scaffolding to produce a chromosome-scale, reference-quality assembly of djulis. The final genome assembly spans 1.63 Gb in 798 scaffolds, with 97.8% of the sequence contained in 27 scaffolds representing the nine haploid chromosomes of each sub-genome of the species. Benchmarking of universal, single-copy orthologs indicated that 98.5% of the conserved orthologous genes for Viridiplantae are complete within the assembled genome, with 92.9% duplicated, as expected for a polyploid. A total of 67.8% of the assembly is repetitive, with the most common repeat being Gypsy long terminal repeat retrotransposons, which had significantly expanded in the B sub-genome. Gene annotation using Iso-Seq data from multiple tissues identified 75,056 putative gene models. Comparisons to quinoa showed strong patterns of synteny which allowed for the identification of homoeologous chromosomes, and sub-genome-specific sequences were used to assign homoeologs to each sub-genome. These results represent the first hexaploid genome assembly and the first assemblies of the C and D genomes of the Chenopodioideae subfamily.


Subject(s)
Chenopodium , Chenopodium/genetics , Chromosomes, Plant/genetics , Genome, Plant , Polyploidy , Synteny
2.
Bot Stud ; 62(1): 2, 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33432466

ABSTRACT

BACKGROUND: Weedy rice, a conspecific weedy counterpart of the cultivated rice (Oryza sativa L.), has been problematic in rice-production area worldwide. Although we started to know about the origin of some weedy traits for some rice-growing regions, an overall assessment of weedy trait-related loci was not yet available. On the other hand, the advances in sequencing technologies, together with community efforts, have made publicly available a large amount of genomic data. Given the availability of public data and the need of "weedy" allele mining for a better management of weedy rice, the objective of the present study was to explore the genetic architecture of weedy traits based on publicly available data, mainly from the 3000 Rice Genome Project (3K-RGP). RESULTS: Based on the results of population structure analysis, we have selected 1378 individuals from four sub-populations (aus, indica, temperate japonica, tropical japonica) without admixed genomic composition for genome-wide association analysis (GWAS). Five traits were investigated: awn color, seed shattering, seed threshability, seed coat color, and seedling height. GWAS was conducted for each sub-population × trait combination and we have identified 66 population-specific trait-associated SNPs. Eleven significant SNPs fell into an annotated gene and four other SNPs were close to a putative candidate gene (± 25 kb). SNPs located in or close to Rc were particularly predictive of the occurrence of seed coat color and our results showed that different sub-populations required different SNPs for a better seed coat color prediction. We compared the data of 3K-RGP to a publicly available weedy rice dataset. The profile of allele frequency, phenotype-genotype segregation of target SNP, as well as GWAS results for the presence and absence of awns diverged between the two sets of data. CONCLUSIONS: The genotype of trait-associated SNPs identified in this study, especially those located in or close to Rc, can be developed to diagnostic SNPs to trace the origin of weedy trait occurred in the field. The difference of results from the two publicly available datasets used in this study emphasized the importance of laboratory experiments to confirm the allele mining results based on publicly available data.

3.
G3 (Bethesda) ; 10(12): 4489-4503, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33028627

ABSTRACT

Seed vigor is crucial for crop early establishment in the field and is particularly important for forage crop production. Oat (Avena sativa L.) is a nutritious food crop and also a valuable forage crop. However, little is known about the genetics of seed vigor in oats. To investigate seed vigor-related traits and their genetic architecture in oats, we developed an easy-to-implement image-based phenotyping pipeline and applied it to 650 elite oat lines from the Collaborative Oat Research Enterprise (CORE). Root number, root surface area, and shoot length were measured in two replicates. Variables such as growth rate were derived. Using a genome-wide association (GWA) approach, we identified 34 and 16 unique loci associated with root traits and shoot traits, respectively, which corresponded to 41 and 16 unique SNPs at a false discovery rate < 0.1. Nine root-associated loci were organized into four sets of homeologous regions, while nine shoot-associated loci were organized into three sets of homeologous regions. The context sequences of five trait-associated markers matched to the sequences of rice, Brachypodium and maize (E-value < 10-10), including three markers matched to known gene models with potential involvement in seed vigor. These were a glucuronosyltransferase, a mitochondrial carrier protein domain containing protein, and an iron-sulfur cluster protein. This study presents the first GWA study on oat seed vigor and data of this study can provide guidelines and foundation for further investigations.


Subject(s)
Avena , Oryza , Avena/genetics , Genome-Wide Association Study , Oryza/genetics , Quantitative Trait Loci , Seeds/genetics
4.
Bot Stud ; 60(1): 19, 2019 Aug 29.
Article in English | MEDLINE | ID: mdl-31468345

ABSTRACT

BACKGROUND: Taichung Native 1 (TN1), a variety of rice (Oryza sativa L.) developed in Taiwan, has played a key role in the green revolution of this major staple crop because of its semi-dwarf characteristics. Due to its susceptibility, it has been used as a susceptibility indicator in rice insect and pathogen resistance studies worldwide. While within-variety differences have been reported for agronomic traits in other rice varieties, no study has addressed the within-variety consistency of pathogen and insect susceptibility of TN1, which would influence the result interpretation of plant-pest interaction studies. Therefore, the objective of this study was to evaluate the genomic consistency and to assess a range of agronomic and insect susceptibility traits in three representative accessions of TN1 in Taiwan. RESULTS: Among these three accessions, two were identical across 43,325 genome-wide single nucleotide polymorphisms (SNPs) while the third one differed at four SNPs. Of the three accessions of TN1, there were minor differences in seed length, seed breadth, length/width ratio, number of leaves and tillers, and number of unfilled seeds. Besides, there was no effect on relative growth rate of Cnaphalocrocis medinalis larvae fed on the three accession sources. Furthermore, there is no different on plant susceptibility among these three accessions against C. medinalis and Nilaparvata lugens. CONCLUSION: Our study indicates that it is appropriate to use TN1 in Taiwan to test for rice insect susceptibility as it yields consistent results.

5.
Plant Genome ; 9(2)2016 07.
Article in English | MEDLINE | ID: mdl-27898818

ABSTRACT

Hexaploid oat ( L., 2 = 6 = 42) is a member of the Poaceae family and has a large genome (∼12.5 Gb) containing 21 chromosome pairs from three ancestral genomes. Physical rearrangements among parental genomes have hindered the development of linkage maps in this species. The objective of this work was to develop a single high-density consensus linkage map that is representative of the majority of commonly grown oat varieties. Data from a cDNA-derived single-nucleotide polymorphism (SNP) array and genotyping-by-sequencing (GBS) were collected from the progeny of 12 biparental recombinant inbred line populations derived from 19 parents representing oat germplasm cultivated primarily in North America. Linkage groups from all mapping populations were compared to identify 21 clusters of conserved collinearity. Linkage groups within each cluster were then merged into 21 consensus chromosomes, generating a framework consensus map of 7202 markers spanning 2843 cM. An additional 9678 markers were placed on this map with a lower degree of certainty. Assignment to physical chromosomes with high confidence was made for nine chromosomes. Comparison of homeologous regions among oat chromosomes and matches to orthologous regions of rice ( L.) reveal that the hexaploid oat genome has been highly rearranged relative to its ancestral diploid genomes as a result of frequent translocations among chromosomes. Heterogeneous chromosome rearrangements among populations were also evident, probably accounting for the failure of some linkage groups to match the consensus. This work contributes to a further understanding of the organization and evolution of hexaploid grass genomes.


Subject(s)
Avena/genetics , Genome, Plant/genetics , Synteny , Chromosome Mapping , Chromosomes, Plant/genetics , Genetic Linkage , Genotype , North America , Polymorphism, Single Nucleotide , Polyploidy
6.
Plant Genome ; 9(2)2016 07.
Article in English | MEDLINE | ID: mdl-27898836

ABSTRACT

Six hundred thirty five oat ( L.) lines and 4561 single-nucleotide polymorphism (SNP) loci were used to evaluate population structure, linkage disequilibrium (LD), and genotype-phenotype association with heading date. The first five principal components (PCs) accounted for 25.3% of genetic variation. Neither the eigenvalues of the first 25 PCs nor the cross-validation errors from = 1 to 20 model-based analyses suggested a structured population. However, the PC and = 2 model-based analyses supported clustering of lines on spring oat vs. southern United States origin, accounting for 16% of genetic variation ( < 0.0001). Single-locus -statistic () in the highest 1% of the distribution suggested linkage groups that may be differentiated between the two population subgroups. Population structure and kinship-corrected LD of = 0.10 was observed at an average pairwise distance of 0.44 cM (0.71 and 2.64 cM within spring and southern oat, respectively). On most linkage groups LD decay was slower within southern lines than within the spring lines. A notable exception was found on linkage group Mrg28, where LD decay was substantially slower in the spring subpopulation. It is speculated that this may be caused by a heterogeneous translocation event on this chromosome. Association with heading date was most consistent across location-years on linkage groups Mrg02, Mrg12, Mrg13, and Mrg24.


Subject(s)
Adaptation, Physiological/genetics , Avena/genetics , Metagenomics , Genetic Association Studies , Genetic Variation , Linkage Disequilibrium , Polymorphism, Single Nucleotide/genetics
7.
PLoS One ; 9(7): e102448, 2014.
Article in English | MEDLINE | ID: mdl-25047601

ABSTRACT

Advances in next-generation sequencing offer high-throughput and cost-effective genotyping alternatives, including genotyping-by-sequencing (GBS). Results have shown that this methodology is efficient for genotyping a variety of species, including those with complex genomes. To assess the utility of GBS in cultivated hexaploid oat (Avena sativa L.), seven bi-parental mapping populations and diverse inbred lines from breeding programs around the world were studied. We examined technical factors that influence GBS SNP calls, established a workflow that combines two bioinformatics pipelines for GBS SNP calling, and provided a nomenclature for oat GBS loci. The high-throughput GBS system enabled us to place 45,117 loci on an oat consensus map, thus establishing a positional reference for further genomic studies. Using the diversity lines, we estimated that a minimum density of one marker per 2 to 2.8 cM would be required for genome-wide association studies (GWAS), and GBS markers met this density requirement in most chromosome regions. We also demonstrated the utility of GBS in additional diagnostic applications related to oat breeding. We conclude that GBS is a powerful and useful approach, which will have many additional applications in oat breeding and genomic studies.


Subject(s)
Avena/genetics , Breeding , Chromosome Mapping , Genome, Plant , Genomics , High-Throughput Nucleotide Sequencing , Linkage Disequilibrium , Polymorphism, Single Nucleotide
8.
New Phytol ; 201(3): 795-809, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24147899

ABSTRACT

Flavonoids are secondary metabolites with multiple functions. In grape (Vitis vinifera), the most abundant flavonoids are proanthocyanidins (PAs), major quality determinants for fruit and wine. However, knowledge about the regulation of PA composition is sparse. Thus, we aimed to identify novel genomic regions involved in this mechanism. Expression quantitative trait locus (eQTL) mapping was performed on the transcript abundance of five downstream PA synthesis genes (dihydroflavonol reductase (VvDFR), leucoanthocyanidin dioxygenase (VvLDOX), leucoanthocyanidin reductase (VvLAR1), VvLAR2 and anthocyanidin reductase (VvANR)) measured by real-time quantitative PCR on a pseudo F1 population in two growing seasons. Twenty-one eQTLs were identified; 17 of them did not overlap with known candidate transcription factors or cis-regulatory sequences. These novel loci and the presence of digenic epistasis support the previous hypothesis of a polygenic regulatory mechanism for PA biosynthesis. In a genomic region co-locating eQTLs for VvDFR, VvLDOX and VvLAR1, gene annotation and a transcriptomic survey suggested that VvMYBC2-L1, a gene coding for an R2R3-MYB protein, is involved in regulating PA synthesis. Phylogenetic analysis showed its high similarity to characterized negative MYB factors. Its spatiotemporal expression profile in grape coincided with PA synthesis. Its functional characterization via overexpression in grapevine hairy roots demonstrated its ability to reduce the amount of PA and to down-regulate expression of PA genes.


Subject(s)
Chromosome Mapping , Fruit/genetics , Plant Proteins/metabolism , Proanthocyanidins/metabolism , Quantitative Trait Loci/genetics , Transcription Factors/metabolism , Vitis/genetics , Biosynthetic Pathways/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant/genetics , Genetic Association Studies , Genotype , Phylogeny , Plant Proteins/genetics , Plant Roots/genetics , Proanthocyanidins/biosynthesis , Proanthocyanidins/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism
9.
Plant Physiol Biochem ; 72: 87-95, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23684499

ABSTRACT

Proanthocyanidins (PA) play a major role in plant protection against biotic and abiotic stresses. Moreover these molecules are known to be beneficial for human health and are responsible for astringency of foods and beverages such as wine and thus have a great impact on the final quality of the product. Genes playing a role in the PA pathway are only partially known. The amount of available transcriptomic and genetic data to select candidate genes without a priori knowledge from orthologous function increases every day. However, the methods used so far generate so many candidate genes that it is impossible to validate all of them. In this study, we used an integrative strategy based on different screening methods to select a reduced list of candidate genes. We have crossed results from different screening methods including QTL mapping and three transcriptomic studies to select 20 candidate genes, located in QTL intervals and fulfilling at least two transcriptomic screenings. This list includes three glucosyltransferases, already suspected to have a role in the PA biosynthetic pathway. Among the 17 remaining genes, we selected three genes to perform further analysis by association genetic studies. For each of these genes, we found a polymorphism linked to PA variation. The three genes (VvMybC2-L1, VvGAT-like and VvCob-like), not previously known to play a role in PA synthesis, are promising candidates for further molecular physiology studies.


Subject(s)
Proanthocyanidins/metabolism , Vitis/metabolism , Gene Expression Regulation, Plant , Signal Transduction/genetics , Signal Transduction/physiology , Vitis/genetics
10.
Plant Sci ; 207: 18-24, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23602095

ABSTRACT

Expression quantitative locus (eQTL) mapping was proposed as a valuable approach to dissect the genetic basis of transcript variation, one of the prime causes of natural phenotypic variation. Few eQTL studies have been performed on woody species due to the difficulty in sample homogenisation. Based on previous knowledge on berry colour formation, we performed eQTL mapping in field experimentation of grapevine with appropriate sampling criteria. The transcript level of VvUFGT, a key enzyme for anthocyanin synthesis was measured by real-time qRT-PCR in grape berry on a 191-individual pseudo-F1 progeny, derived from a cross between Syrah and Grenache cultivars. Two eQTLs were identified: one, explaining 20%, of genotypic variance and co-locating with VvUFGT itself (cis-eQTL), was principally due to the contrast between Grenache alleles; the other, explaining 35% of genotypic variance, was a trans-eQTL due to Syrah allelic contrast and co-located with VvMYBAs, transcription factors known to activate the expression of VvUFGT. This study assessed and validated the feasibility of eQTL mapping approach in grapevine and offered insights and new hypotheses on grape skin colour formation.


Subject(s)
Anthocyanins/genetics , Pigmentation , Plant Proteins/genetics , Quantitative Trait Loci , Vitis/genetics , Anthocyanins/metabolism , Chromosome Mapping , Fruit/genetics , Fruit/metabolism , Genotype , Plant Proteins/metabolism , Polymerase Chain Reaction , Vitis/metabolism
11.
BMC Plant Biol ; 12: 30, 2012 Feb 27.
Article in English | MEDLINE | ID: mdl-22369244

ABSTRACT

BACKGROUND: Proanthocyanidins (PAs), or condensed tannins, are flavonoid polymers, widespread throughout the plant kingdom, which provide protection against herbivores while conferring organoleptic and nutritive values to plant-derived foods, such as wine. However, the genetic basis of qualitative and quantitative PA composition variation is still poorly understood. To elucidate the genetic architecture of the complex grape PA composition, we first carried out quantitative trait locus (QTL) analysis on a 191-individual pseudo-F1 progeny. Three categories of PA variables were assessed: total content, percentages of constitutive subunits and composite ratio variables. For nine functional candidate genes, among which eight co-located with QTLs, we performed association analyses using a diversity panel of 141 grapevine cultivars in order to identify causal SNPs. RESULTS: Multiple QTL analysis revealed a total of 103 and 43 QTLs, respectively for seed and skin PA variables. Loci were mainly of additive effect while some loci were primarily of dominant effect. Results also showed a large involvement of pairwise epistatic interactions in shaping PA composition. QTLs for PA variables in skin and seeds differed in number, position, involvement of epistatic interaction and allelic effect, thus revealing different genetic determinisms for grape PA composition in seeds and skin. Association results were consistent with QTL analyses in most cases: four out of nine tested candidate genes (VvLAR1, VvMYBPA2, VvCHI1, VvMYBPA1) showed at least one significant association with PA variables, especially VvLAR1 revealed as of great interest for further functional investigation. Some SNP-phenotype associations were observed only in the diversity panel. CONCLUSIONS: This study presents the first QTL analysis on grape berry PA composition with a comparison between skin and seeds, together with an association study. Our results suggest a complex genetic control for PA traits and different genetic architectures for grape PA composition between berry skin and seeds. This work also uncovers novel genomic regions for further investigation in order to increase our knowledge of the genetic basis of PA composition.


Subject(s)
Proanthocyanidins/genetics , Quantitative Trait Loci/genetics , Vitis/genetics , Chromosome Mapping , Proanthocyanidins/chemistry
12.
Genetics ; 186(1): 395-404, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20592258

ABSTRACT

Using advanced intermated populations has been proposed as a way to increase the accuracy of mapping experiments. An F(3) population of 300 lines and an advanced intermated F(3) population of 322 lines, both derived from the same parental maize inbred lines, were jointly evaluated for dry grain yield (DGY), grain moisture (GM), and silking date (SD). Genetic variance for dry grain yield was significantly lower in the intermated population compared to the F(3) population. The confidence interval around a QTL was on average 2.31 times smaller in the intermated population compared to the F(3) population. One controversy surrounding QTL mapping is whether QTL identified in fact represent single loci. This study identifies two distinct loci for dry grain yield in the intermated population in coupling phase, while the F(3) identifies only a single locus. Surprisingly, fewer QTL were detected in the intermated population than the F(3) (21 vs. 30) and <50% of the detected QTL were shared among the two populations. Cross-validation showed that selection bias was more important in the intermated population than in the F(3) and that each detected QTL explained a lower percentage of the variance. This finding supports the hypothesis that QTL detected in conventional populations correspond mainly to clusters of linked QTL. The actual number of QTL involved in the genetic architecture of complex traits may be substantially larger, with effect sizes substantially smaller than in conventional populations.


Subject(s)
Edible Grain/growth & development , Edible Grain/genetics , Hybridization, Genetic/genetics , Zea mays/growth & development , Zea mays/genetics , Chromosome Mapping , Edible Grain/metabolism , Genotype , Phenotype , Quantitative Trait Loci/genetics , Reproducibility of Results , Water/metabolism , Zea mays/metabolism
13.
Biochem Biophys Res Commun ; 338(2): 830-8, 2005 Dec 16.
Article in English | MEDLINE | ID: mdl-16256070

ABSTRACT

Most human cancers are of epithelial origin, but many cell culture models for the study of cancer-causing genes use fibroblasts. In addition, efficient delivery and stable expression of foreign genes into non-transformed cell lines are often difficult. To address both questions, we here established a non-transformed rat kidney epithelial RK3E cell line that constitutively expresses tv-a (receptor for subgroup A avian leukosis virus, ALV) for delivery of foreign genes via avian retroviral infection. This cell line (RK3E/tv-a) allows efficient and stable expression of either single or multiple foreign genes. Furthermore, tv-a-mediated delivery of various oncogenes (v-src, H-ras, myc or akt) leads to malignant transformation. v-src-transformed cells exhibited classical cancerous phenotypes in vitro, and induced tumor formation and lung metastasis upon injecting into immunodeficient mice. Expression profiles of downstream molecular effectors (E-cadherin, beta-catenin, cyclin D1, Myc, VEGF, MMP-2, and MMP-9) in these cells correlate with characteristics of cancerous phenotypes. This new cell model serves as a useful tool to study cancer-causing genes in epithelial cell type.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Oncogene Protein pp60(v-src)/metabolism , Animals , Avian Proteins/genetics , Avian Proteins/metabolism , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Disease Models, Animal , Neoplasms, Experimental/genetics , Oncogene Protein pp60(v-src)/genetics , Rats , Receptors, Virus/genetics , Receptors, Virus/metabolism , Retroviridae/genetics , Retroviridae/metabolism , Transfection/methods
SELECTION OF CITATIONS
SEARCH DETAIL