Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Br J Haematol ; 200(4): 489-493, 2023 02.
Article in English | MEDLINE | ID: mdl-36349721

ABSTRACT

Some patients with therapy-related myeloid neoplasms (t-MN) may have unsuspected inherited cancer predisposition syndrome (CPS). We propose a set of clinical criteria to identify t-MN patients with high risk of CPS (HR-CPS). Among 225 t-MN patients with an antecedent non-myeloid malignancy, our clinical criteria identified 52 (23%) HR-CPS patients. Germline whole-exome sequencing identified pathogenic or likely pathogenic variants in 10 of 27 HR-CPS patients compared to 0 of 9 low-risk CPS patients (37% vs. 0%, p = 0.04). These simple clinical criteria identify t-MN patients most likely to benefit from genetic testing for inherited CPS.


Subject(s)
Neoplasms, Second Primary , Neoplasms , Humans , Germ-Line Mutation , Neoplasms/genetics , Mutation , Genetic Predisposition to Disease , Genetic Testing , Neoplasms, Second Primary/genetics
2.
Clin Breast Cancer ; 21(4): e340-e361, 2021 08.
Article in English | MEDLINE | ID: mdl-33446413

ABSTRACT

OBJECTIVE/BACKGROUND: We performed a retrospective analysis of longitudinal real-world data (RWD) from patients with breast cancer to replicate results from clinical studies and demonstrate the feasibility of generating real-world evidence. We also assessed the value of transcriptome profiling as a complementary tool for determining molecular subtypes. METHODS: De-identified, longitudinal data were analyzed after abstraction from records of patients with breast cancer in the United States (US) structured and stored in the Tempus database. Demographics, clinical characteristics, molecular subtype, treatment history, and survival outcomes were assessed according to strict qualitative criteria. RNA sequencing and clinical data were used to predict molecular subtypes and signaling pathway enrichment. RESULTS: The clinical abstraction cohort (n = 4000) mirrored the demographics and clinical characteristics of patients with breast cancer in the US, indicating feasibility for RWE generation. Among patients who were human epidermal growth factor receptor 2-positive (HER2+), 74.2% received anti-HER2 therapy, with ∼70% starting within 3 months of a positive test result. Most non-treated patients were early stage. In this RWD set, 31.7% of patients with HER2+ immunohistochemistry (IHC) had discordant fluorescence in situ hybridization results recorded. Among patients with multiple HER2 IHC results at diagnosis, 18.6% exhibited intra-test discordance. Through development of a whole-transcriptome model to predict IHC receptor status in the molecular sequenced cohort (n = 400), molecular subtypes were resolved for all patients (n = 36) with equivocal HER2 statuses from abstracted test results. Receptor-related signaling pathways were differentially enriched between clinical molecular subtypes. CONCLUSIONS: RWD in the Tempus database mirrors the overall population of patients with breast cancer in the US. These results suggest that real-time, RWD analyses are feasible in a large, highly heterogeneous database. Furthermore, molecular data may aid deficiencies and discrepancies observed from breast cancer RWD.


Subject(s)
Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Sequence Analysis, RNA , Aged , Breast Neoplasms/therapy , Databases, Factual , Feasibility Studies , Female , Gene Expression Profiling , Humans , Longitudinal Studies , Male , Middle Aged , Receptor, ErbB-2/genetics , Receptors, Estrogen/genetics , Retrospective Studies , Sensitivity and Specificity , United States
3.
Hum Mutat ; 42(3): 223-236, 2021 03.
Article in English | MEDLINE | ID: mdl-33300245

ABSTRACT

Germline pathogenic variants in TP53 are associated with Li-Fraumeni syndrome, a cancer predisposition disorder inherited in an autosomal dominant pattern associated with a high risk of malignancy, including early-onset breast cancers, sarcomas, adrenocortical carcinomas, and brain tumors. Intense cancer surveillance for individuals with TP53 germline pathogenic variants is associated with reduced cancer-related mortality. Accurate and consistent classification of germline variants across clinical and research laboratories is important to ensure appropriate cancer surveillance recommendations. Here, we describe the work performed by the Clinical Genome Resource TP53 Variant Curation Expert Panel (ClinGen TP53 VCEP) focused on specifying the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) guidelines for germline variant classification to the TP53 gene. Specifications were developed for 20 ACMG/AMP criteria, while nine were deemed not applicable. The original strength level for the 10 criteria was also adjusted due to current evidence. Use of TP53-specific guidelines and sharing of clinical data among experts and clinical laboratories led to a decrease in variants of uncertain significance from 28% to 12% compared with the original guidelines. The ClinGen TP53 VCEP recommends the use of these TP53-specific ACMG/AMP guidelines as the standard strategy for TP53 germline variant classification.


Subject(s)
Genetic Variation , Li-Fraumeni Syndrome , Tumor Suppressor Protein p53 , Genetic Testing , Germ Cells , Humans , Li-Fraumeni Syndrome/diagnosis , Li-Fraumeni Syndrome/genetics , Tumor Suppressor Protein p53/genetics , United States
4.
Hum Mutat ; 41(7): 1263-1279, 2020 07.
Article in English | MEDLINE | ID: mdl-32196822

ABSTRACT

Heterozygous de novo variants in the eukaryotic elongation factor EEF1A2 have previously been described in association with intellectual disability and epilepsy but never functionally validated. Here we report 14 new individuals with heterozygous EEF1A2 variants. We functionally validate multiple variants as protein-damaging using heterologous expression and complementation analysis. Our findings allow us to confirm multiple variants as pathogenic and broaden the phenotypic spectrum to include dystonia/choreoathetosis, and in some cases a degenerative course with cerebral and cerebellar atrophy. Pathogenic variants appear to act via a haploinsufficiency mechanism, disrupting both the protein synthesis and integrated stress response functions of EEF1A2. Our studies provide evidence that EEF1A2 is highly intolerant to variation and that de novo pathogenic variants lead to an epileptic-dyskinetic encephalopathy with both neurodevelopmental and neurodegenerative features. Developmental features may be driven by impaired synaptic protein synthesis during early brain development while progressive symptoms may be linked to an impaired ability to handle cytotoxic stressors.


Subject(s)
Epilepsy, Generalized/genetics , Mutation, Missense , Peptide Elongation Factor 1/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Genetic Complementation Test , Haploinsufficiency , Heterozygote , Humans , Male , Protein Structure, Tertiary
5.
JAMA Netw Open ; 3(2): e200202, 2020 02 05.
Article in English | MEDLINE | ID: mdl-32108894

ABSTRACT

Importance: Tumor mutation burden (TMB) is an emerging factor associated with survival with immunotherapy. When tumor-normal pairs are available, TMB is determined by calculating the difference between somatic and germline sequences. In the case of commonly used tumor-only sequencing, additional steps are needed to estimate the somatic alterations. Computational tools have been developed to determine germline contribution based on sample copy state, purity estimates, and occurrence of the variant in population databases; however, there is potential for sampling bias in population data sets. Objective: To investigate whether tumor-only filtering approaches overestimate TMB. Design, Setting, and Participants: This was a retrospective cohort study of 50 tumor samples from 10 different tumor types. A 595-gene panel test was used to assess TMB by adding all missense, indels, and frameshift variants with an allelic fraction of at least 5% and coverage of at least 100× within each tumor. Tumor-only TMB was evaluated against the criterion standard of matched germline-subtracted TMB at 3 levels. Level 1 removed all the tumor-only variants with allelic fraction of at least 1% in the Exome Aggregation Consortium database (with the Cancer Genome Atlas cohort removed). Level 2 removed all variants observed in population databases, simulating a naive approach of removing germline variation. Level 3 used an internal tumor-only pipeline for calculating TMB. These specimens were processed with a commercially available panel, and results were analyzed at the Mayo Clinic. Data were analyzed between December 1, 2018, and May 28, 2019. Main Outcomes and Measures: Tumor mutation burden per megabase (Mb) as determined by 3 levels of filtering and germline subtraction. Results: There were significantly higher estimates of TMB with level 1 (median [range] mutations per Mb, 28.8 [17.5-67.1]), level 2 (median [range] mutations per Mb, 20.8 [10.4-30.8]), and level 3 (median [range] mutations per Mb, 3.8 [0.8-12.1]) tumor-only filtering approaches than those determined by germline subtraction (median [range] mutations per Mb, 1.7 [0.4-9.2]). There were no strong associations between TMB estimates and tumor-germline TMB for level 1 filtering (r = 0.008; 95% CI, -0.004 to 0.020), level 2 filtering (r = 0.018; 95% CI, 0.003 to 0.033), or level 3 filtering (r = 0.54; 95% CI, 0.36 to 0.68). Conclusions and Relevance: The findings of this study indicate that tumor-only approaches that filter variants in population databases can overestimate TMB compared with germline subtraction methods. Despite improved association with more stringent filtering approaches, these falsely elevated estimates may result in the inappropriate categorization of tumor specimens and negatively affect clinical trial results and patient outcomes.


Subject(s)
Biomarkers, Tumor/genetics , Neoplasms/genetics , Tumor Burden/genetics , Humans , Immunotherapy , Mutation/genetics , Retrospective Studies
6.
Nat Biotechnol ; 37(11): 1351-1360, 2019 11.
Article in English | MEDLINE | ID: mdl-31570899

ABSTRACT

Genomic analysis of paired tumor-normal samples and clinical data can be used to match patients to cancer therapies or clinical trials. We analyzed 500 patient samples across diverse tumor types using the Tempus xT platform by DNA-seq, RNA-seq and immunological biomarkers. The use of a tumor and germline dataset led to substantial improvements in mutation identification and a reduction in false-positive rates. RNA-seq enhanced gene fusion detection and cancer type classifications. With DNA-seq alone, 29.6% of patients matched to precision therapies supported by high levels of evidence or by well-powered studies. This proportion increased to 43.4% with the addition of RNA-seq and immunotherapy biomarker results. Combining these data with clinical criteria, 76.8% of patients were matched to at least one relevant clinical trial on the basis of biomarkers measured by the xT assay. These results indicate that extensive molecular profiling combined with clinical data identifies personalized therapies and clinical trials for a large proportion of patients with cancer and that paired tumor-normal plus transcriptome sequencing outperforms tumor-only DNA panel testing.


Subject(s)
Genomics/methods , Neoplasms/genetics , Sequence Analysis, DNA/methods , Sequence Analysis, RNA/methods , Biomarkers, Tumor/genetics , Biomarkers, Tumor/immunology , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Male , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/immunology , Precision Medicine
7.
Oncotarget ; 10(24): 2384-2396, 2019 Mar 22.
Article in English | MEDLINE | ID: mdl-31040929

ABSTRACT

We developed and clinically validated a hybrid capture next generation sequencing assay to detect somatic alterations and microsatellite instability in solid tumors and hematologic malignancies. This targeted oncology assay utilizes tumor-normal matched samples for highly accurate somatic alteration calling and whole transcriptome RNA sequencing for unbiased identification of gene fusion events. The assay was validated with a combination of clinical specimens and cell lines, and recorded a sensitivity of 99.1% for single nucleotide variants, 98.1% for indels, 99.9% for gene rearrangements, 98.4% for copy number variations, and 99.9% for microsatellite instability detection. This assay presents a wide array of data for clinical management and clinical trial enrollment while conserving limited tissue.

8.
Hum Mol Genet ; 28(10): 1620-1628, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30608580

ABSTRACT

Missense mutations in the gene, MAP3K1, are a common cause of 46,XY gonadal dysgenesis, accounting for 15-20% of cases [Ostrer, 2014, Disorders of sex development (DSDs): an update. J. Clin. Endocrinol. Metab., 99, 1503-1509]. Functional studies demonstrated that all of these mutations cause a protein gain-of-function that alters co-factor binding and increases phosphorylation of the downstream MAP kinase pathway targets, MAPK11, MAP3K and MAPK1. This dysregulation of the MAP kinase pathway results in increased CTNNB1, increased expression of WNT4 and FOXL2 and decreased expression of SRY and SOX9. Unique and recurrent pathogenic mutations cluster in three semi-contiguous domains outside the kinase region of the protein, a newly identified N-terminal domain that shares homology with the Guanine Exchange Factor (residues Met164 to Glu231), a Plant HomeoDomain (residues Met442 to Trp495) and an ARMadillo repeat domain (residues Met566 to Glu862). Despite the presence of the mutation clusters and clinical data, there exists a dearth of mechanistic insights behind the development imbalance. In this paper, we use structural modeling and functional data of these mutations to understand alterations of the MAP3K1 protein and the effects on protein folding, binding and downstream target phosphorylation. We show that these mutations have differential effects on protein binding depending on the domains in which they occur. These mutations increase the binding of the RHOA, MAP3K4 and FRAT1 proteins and generally decrease the binding of RAC1. Thus, pathologies in MAP3K1 disrupt the balance between the pro-kinase activities of the RHOA and MAP3K4 binding partners and the inhibitory activity of RAC1.


Subject(s)
Disorders of Sex Development/genetics , MAP Kinase Kinase Kinase 1/genetics , MAP Kinase Kinase Kinase 4/genetics , rac1 GTP-Binding Protein/genetics , Adaptor Proteins, Signal Transducing/genetics , Armadillo Domain Proteins/genetics , Disorder of Sex Development, 46,XY , Disorders of Sex Development/pathology , Female , Forkhead Box Protein L2/genetics , Gene Expression Regulation/genetics , Gonadal Dysgenesis, 46,XY/genetics , Gonadal Dysgenesis, 46,XY/pathology , Humans , MAP Kinase Kinase Kinase 1/chemistry , MAP Kinase Kinase Kinase 4/chemistry , MAP Kinase Signaling System/genetics , Male , Mutation, Missense/genetics , Protein Binding/genetics , Proto-Oncogene Proteins/genetics , Sex-Determining Region Y Protein/genetics , rac1 GTP-Binding Protein/chemistry , rhoA GTP-Binding Protein/chemistry , rhoA GTP-Binding Protein/genetics
9.
JAMA Oncol ; 5(1): 51-57, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30128536

ABSTRACT

Importance: Since the discovery of BRCA1 and BRCA2, multiple high- and moderate-penetrance genes have been reported as risk factors for hereditary breast cancer, ovarian cancer, or both; however, it is unclear whether these findings represent the complete genetic landscape of these cancers. Systematic investigation of the genetic contributions to breast and ovarian cancers is needed to confirm these findings and explore potentially new associations. Objective: To confirm reported and identify additional predisposition genes for breast or ovarian cancer. Design, Setting, and Participants: In this sample of 11 416 patients with clinical features of breast cancer, ovarian cancer, or both who were referred for genetic testing from 1200 hospitals and clinics across the United States and of 3988 controls who were referred for genetic testing for noncancer conditions between 2014 and 2015, whole-exome sequencing was conducted and gene-phenotype associations were examined. Case-control analyses using the Genome Aggregation Database as a set of reference controls were also conducted. Main Outcomes and Measures: Breast cancer risk associated with pathogenic variants among 625 cancer predisposition genes; association of identified predisposition breast or ovarian cancer genes with the breast cancer subtypes invasive ductal, invasive lobular, hormone receptor-positive, hormone receptor-negative, and male, and with early-onset disease. Results: Of 9639 patients with breast cancer, 3960 (41.1%) were early-onset cases (≤45 years at diagnosis) and 123 (1.3%) were male, with men having an older age at diagnosis than women (mean [SD] age, 61.8 [12.8] vs 48.6 [11.4] years). Of 2051 women with ovarian cancer, 445 (21.7%) received a diagnosis at 45 years or younger. Enrichment of pathogenic variants were identified in 4 non-BRCA genes associated with breast cancer risk: ATM (odds ratio [OR], 2.97; 95% CI, 1.67-5.68), CHEK2 (OR, 2.19; 95% CI, 1.40-3.56), PALB2 (OR, 5.53; 95% CI, 2.24-17.65), and MSH6 (OR, 2.59; 95% CI, 1.35-5.44). Increased risk for ovarian cancer was associated with 4 genes: MSH6 (OR, 4.16; 95% CI, 1.95-9.47), RAD51C (OR, not estimable; false-discovery rate-corrected P = .004), TP53 (OR, 18.50; 95% CI, 2.56-808.10), and ATM (OR, 2.85; 95% CI, 1.30-6.32). Neither the MRN complex genes nor CDKN2A was associated with increased breast or ovarian cancer risk. The findings also do not support previously reported breast cancer associations with the ovarian cancer susceptibility genes BRIP1, RAD51C, and RAD51D, or mismatch repair genes MSH2 and PMS2. Conclusions and Relevance: The results of this large-scale exome sequencing of patients and controls shed light on both well-established and controversial non-BRCA predisposition gene associations with breast or ovarian cancer reported to date and may implicate additional breast or ovarian cancer susceptibility gene candidates involved in DNA repair and genomic maintenance.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Exome Sequencing , Ovarian Neoplasms/genetics , Adult , Aged , Breast Neoplasms/diagnosis , Breast Neoplasms, Male/genetics , Case-Control Studies , Female , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Ovarian Neoplasms/diagnosis , Phenotype , Risk Assessment , Risk Factors , United States
10.
Hum Mutat ; 39(11): 1581-1592, 2018 11.
Article in English | MEDLINE | ID: mdl-30311380

ABSTRACT

The ClinGen PTEN Expert Panel was organized by the ClinGen Hereditary Cancer Clinical Domain Working Group to assemble clinicians, researchers, and molecular diagnosticians with PTEN expertise to develop specifications to the 2015 ACMG/AMP Sequence Variant Interpretation Guidelines for PTEN variant interpretation. We describe finalized PTEN-specific variant classification criteria and outcomes from pilot testing of 42 variants with benign/likely benign (BEN/LBEN), pathogenic/likely pathogenic (PATH/LPATH), uncertain significance (VUS), and conflicting (CONF) ClinVar assertions. Utilizing these rules, classifications concordant with ClinVar assertions were achieved for 14/15 (93.3%) BEN/LBEN and 16/16 (100%) PATH/LPATH ClinVar consensus variants for an overall concordance of 96.8% (30/31). The variant where agreement was not reached was a synonymous variant near a splice donor with noncanonical sequence for which in silico models cannot predict the native site. Applying these rules to six VUS and five CONF variants, adding shared internal laboratory data enabled one VUS to be classified as LBEN and two CONF variants to be as classified as PATH and LPATH. This study highlights the benefit of gene-specific criteria and the value of sharing internal laboratory data for variant interpretation. Our PTEN-specific criteria and expertly reviewed assertions should prove helpful for laboratories and others curating PTEN variants.


Subject(s)
Genome, Human/genetics , PTEN Phosphohydrolase/genetics , Databases, Genetic , Genetic Testing , Genetic Variation/genetics , High-Throughput Nucleotide Sequencing , Humans , Software
11.
Oncotarget ; 9(40): 25826-25832, 2018 May 25.
Article in English | MEDLINE | ID: mdl-29899824

ABSTRACT

We have developed a clinically validated NGS assay that includes tumor, germline and RNA sequencing. We apply this assay to clinical specimens and cell lines, and we demonstrate a clinical sensitivity of 98.4% and positive predictive value of 100% for the clinically actionable variants measured by the assay. We also demonstrate highly accurate copy number measurements and gene rearrangement identification.

12.
Nature ; 555(7696): 371-376, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29489755

ABSTRACT

Analysis of molecular aberrations across multiple cancer types, known as pan-cancer analysis, identifies commonalities and differences in key biological processes that are dysregulated in cancer cells from diverse lineages. Pan-cancer analyses have been performed for adult but not paediatric cancers, which commonly occur in developing mesodermic rather than adult epithelial tissues. Here we present a pan-cancer study of somatic alterations, including single nucleotide variants, small insertions or deletions, structural variations, copy number alterations, gene fusions and internal tandem duplications in 1,699 paediatric leukaemias and solid tumours across six histotypes, with whole-genome, whole-exome and transcriptome sequencing data processed under a uniform analytical framework. We report 142 driver genes in paediatric cancers, of which only 45% match those found in adult pan-cancer studies; copy number alterations and structural variants constituted the majority (62%) of events. Eleven genome-wide mutational signatures were identified, including one attributed to ultraviolet-light exposure in eight aneuploid leukaemias. Transcription of the mutant allele was detectable for 34% of protein-coding mutations, and 20% exhibited allele-specific expression. These data provide a comprehensive genomic architecture for paediatric cancers and emphasize the need for paediatric cancer-specific development of precision therapies.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genome, Human/genetics , Leukemia/genetics , Mutation/genetics , Neoplasms/genetics , Alleles , Aneuploidy , Child , DNA Copy Number Variations , Exome/genetics , Humans , Mutation/radiation effects , Mutation Rate , Oncogenes/genetics , Precision Medicine/trends , Ultraviolet Rays/adverse effects
13.
Genet Med ; 20(9): 1099-1102, 2018 09.
Article in English | MEDLINE | ID: mdl-29388939

ABSTRACT

In the published version of this paper, some of the columns in the last three rows of Table 3 were mistakenly transposed. The corrected table appears below. In col. 6 of the row for DNMT3A, "S3" was published in the original article. However, in the revised table for the corrigendum, it has been corrected to "S1". In col. 6 of the row for SON, "S3" was published in the original article. However, in the revised table for the corrigendum, it has been corrected to "S2".

14.
Neurology ; 89(4): 385-394, 2017 Jul 25.
Article in English | MEDLINE | ID: mdl-28667181

ABSTRACT

OBJECTIVE: To evaluate the phenotypic spectrum caused by mutations in dynamin 1 (DNM1), encoding the presynaptic protein DNM1, and to investigate possible genotype-phenotype correlations and predicted functional consequences based on structural modeling. METHODS: We reviewed phenotypic data of 21 patients (7 previously published) with DNM1 mutations. We compared mutation data to known functional data and undertook biomolecular modeling to assess the effect of the mutations on protein function. RESULTS: We identified 19 patients with de novo mutations in DNM1 and a sibling pair who had an inherited mutation from a mosaic parent. Seven patients (33.3%) carried the recurrent p.Arg237Trp mutation. A common phenotype emerged that included severe to profound intellectual disability and muscular hypotonia in all patients and an epilepsy characterized by infantile spasms in 16 of 21 patients, frequently evolving into Lennox-Gastaut syndrome. Two patients had profound global developmental delay without seizures. In addition, we describe a single patient with normal development before the onset of a catastrophic epilepsy, consistent with febrile infection-related epilepsy syndrome at 4 years. All mutations cluster within the GTPase or middle domains, and structural modeling and existing functional data suggest a dominant-negative effect on DMN1 function. CONCLUSIONS: The phenotypic spectrum of DNM1-related encephalopathy is relatively homogeneous, in contrast to many other genetic epilepsies. Up to one-third of patients carry the recurrent p.Arg237Trp variant, which is now one of the most common recurrent variants in epileptic encephalopathies identified to date. Given the predicted dominant-negative mechanism of this mutation, this variant presents a prime target for therapeutic intervention.


Subject(s)
Brain Diseases/genetics , Brain Diseases/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mutation , Adolescent , Child , Child, Preschool , Cohort Studies , DNA Mutational Analysis , Dynamins , Female , Homeodomain Proteins , Humans , Infant , Male , Models, Molecular , Phenotype , Short Stature Homeobox Protein , Siblings , Synaptic Vesicles/metabolism , Young Adult
15.
JAMA Oncol ; 3(9): 1190-1196, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28418444

ABSTRACT

IMPORTANCE: Germline pathogenic variants in BRCA1 and BRCA2 predispose to an increased lifetime risk of breast cancer. However, the relevance of germline variants in other genes from multigene hereditary cancer testing panels is not well defined. OBJECTIVE: To determine the risks of breast cancer associated with germline variants in cancer predisposition genes. DESIGN, SETTING, AND PARTICIPANTS: A study population of 65 057 patients with breast cancer receiving germline genetic testing of cancer predisposition genes with hereditary cancer multigene panels. Associations between pathogenic variants in non-BRCA1 and non-BRCA2 predisposition genes and breast cancer risk were estimated in a case-control analysis of patients with breast cancer and Exome Aggregation Consortium reference controls. The women underwent testing between March 15, 2012, and June 30, 2016. MAIN OUTCOMES AND MEASURES: Breast cancer risk conferred by pathogenic variants in non-BRCA1 and non-BRCA2 predisposition genes. RESULTS: The mean (SD) age at diagnosis for the 65 057 women included in the analysis was 48.5 (11.1) years. The frequency of pathogenic variants in 21 panel genes identified in 41 611 consecutively tested white women with breast cancer was estimated at 10.2%. After exclusion of BRCA1, BRCA2, and syndromic breast cancer genes (CDH1, PTEN, and TP53), observed pathogenic variants in 5 of 16 genes were associated with high or moderately increased risks of breast cancer: ATM (OR, 2.78; 95% CI, 2.22-3.62), BARD1 (OR, 2.16; 95% CI, 1.31-3.63), CHEK2 (OR, 1.48; 95% CI, 1.31-1.67), PALB2 (OR, 7.46; 95% CI, 5.12-11.19), and RAD51D (OR, 3.07; 95% CI, 1.21-7.88). Conversely, variants in the BRIP1 and RAD51C ovarian cancer risk genes; the MRE11A, RAD50, and NBN MRN complex genes; the MLH1 and PMS2 mismatch repair genes; and NF1 were not associated with increased risks of breast cancer. CONCLUSIONS AND RELEVANCE: This study establishes several panel genes as high- and moderate-risk breast cancer genes and provides estimates of breast cancer risk associated with pathogenic variants in these genes among individuals qualifying for clinical genetic testing.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , Breast Neoplasms/genetics , Checkpoint Kinase 2/genetics , DNA-Binding Proteins/genetics , Genetic Predisposition to Disease , Nuclear Proteins/genetics , Ovarian Neoplasms/genetics , Tumor Suppressor Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Acid Anhydride Hydrolases , Adult , Case-Control Studies , Cell Cycle Proteins/genetics , Cyclin-Dependent Kinase Inhibitor p16 , Cyclin-Dependent Kinase Inhibitor p18/genetics , DNA Repair Enzymes/genetics , Fanconi Anemia Complementation Group N Protein , Fanconi Anemia Complementation Group Proteins , Female , Genetic Testing , Germ-Line Mutation , Humans , MRE11 Homologue Protein , Middle Aged , Mismatch Repair Endonuclease PMS2/genetics , MutL Protein Homolog 1/genetics , MutS Homolog 2 Protein/genetics , Neurofibromin 1/genetics , Phenotype , RNA Helicases/genetics , Risk Factors , White People/genetics
16.
Genet Med ; 19(2): 224-235, 2017 02.
Article in English | MEDLINE | ID: mdl-27513193

ABSTRACT

PURPOSE: Diagnostic exome sequencing (DES) is now a commonly ordered test for individuals with undiagnosed genetic disorders. In addition to providing a diagnosis for characterized diseases, exome sequencing has the capacity to uncover novel candidate genes for disease. METHODS: Family-based DES included analysis of both characterized and novel genetic etiologies. To evaluate candidate genes for disease in the clinical setting, we developed a systematic, rule-based classification schema. RESULTS: Testing identified a candidate gene among 7.7% (72/934) of patients referred for DES; 37 (4.0%) and 35 (3.7%) of the genes received evidence scores of "candidate" and "suspected candidate," respectively. A total of 71 independent candidate genes were reported among the 72 patients, and 38% (27/71) were subsequently corroborated in the peer-reviewed literature. This rate of corroboration increased to 51.9% (27/52) among patients whose gene was reported at least 12 months previously. CONCLUSIONS: Herein, we provide transparent, comprehensive, and standardized scoring criteria for the clinical reporting of candidate genes. These results demonstrate that DES is an integral tool for genetic diagnosis, especially for elucidating the molecular basis for both characterized and novel candidate genetic etiologies. Gene discoveries also advance the understanding of normal human biology and more common diseases.Genet Med 19 2, 224-235.


Subject(s)
Exome Sequencing , Genetic Association Studies , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Databases, Genetic , Exome/genetics , Genetic Diseases, Inborn/pathology , High-Throughput Nucleotide Sequencing/methods , Humans , Mutation
17.
Nat Genet ; 48(12): 1551-1556, 2016 12.
Article in English | MEDLINE | ID: mdl-27798625

ABSTRACT

Acute myeloid leukemia (AML) comprises a heterogeneous group of leukemias frequently defined by recurrent cytogenetic abnormalities, including rearrangements involving the core-binding factor (CBF) transcriptional complex. To better understand the genomic landscape of CBF-AMLs, we analyzed both pediatric (n = 87) and adult (n = 78) samples, including cases with RUNX1-RUNX1T1 (n = 85) or CBFB-MYH11 (n = 80) rearrangements, by whole-genome or whole-exome sequencing. In addition to known mutations in the Ras pathway, we identified recurrent stabilizing mutations in CCND2, suggesting a previously unappreciated cooperating pathway in CBF-AML. Outside of signaling alterations, RUNX1-RUNX1T1 and CBFB-MYH11 AMLs demonstrated remarkably different spectra of cooperating mutations, as RUNX1-RUNX1T1 cases harbored recurrent mutations in DHX15 and ZBTB7A, as well as an enrichment of mutations in epigenetic regulators, including ASXL2 and the cohesin complex. This detailed analysis provides insights into the pathogenesis and development of CBF-AML, while highlighting dramatic differences in the landscapes of cooperating mutations for these related AML subtypes.


Subject(s)
Biomarkers, Tumor/genetics , Core Binding Factors/genetics , Genomics/methods , Leukemia, Myeloid, Acute/genetics , Mutation/genetics , Oncogene Proteins, Fusion/genetics , Adult , Child , Humans
18.
Ann Neurol ; 80(4)2016 10.
Article in English | MEDLINE | ID: mdl-27543892

ABSTRACT

The hereditary spastic paraplegias (HSPs) are heterogeneous neurodegenerative disorders with over 50 known causative genes. We identified a recurrent mutation in KCNA2 (c.881G>A, p.R294H), encoding the voltage-gated K(+) -channel, KV 1.2, in two unrelated families with HSP, intellectual disability (ID), and ataxia. Follow-up analysis of > 2,000 patients with various neurological phenotypes identified a de novo p.R294H mutation in a proband with ataxia and ID. Two-electrode voltage-clamp recordings of Xenopus laevis oocytes expressing mutant KV 1.2 channels showed loss of function with a dominant-negative effect. Our findings highlight the phenotypic spectrum of a recurrent KCNA2 mutation, implicating ion channel dysfunction as a novel HSP disease mechanism. Ann Neurol 2016.


Subject(s)
Ataxia/genetics , Intellectual Disability/genetics , Kv1.2 Potassium Channel/genetics , Spastic Paraplegia, Hereditary/genetics , Adult , Animals , Ataxia/physiopathology , Child , Exome , Female , Humans , Intellectual Disability/physiopathology , Male , Middle Aged , Mutation , Oocytes/metabolism , Pedigree , Spastic Paraplegia, Hereditary/physiopathology , Xenopus laevis , Young Adult
19.
Eur J Hum Genet ; 24(12): 1761-1770, 2016 12.
Article in English | MEDLINE | ID: mdl-27352968

ABSTRACT

Genetic generalized epilepsy (GGE), formerly known as idiopathic generalized epilepsy, is the most common form of epilepsy and is thought to have predominant genetic etiology. GGE are clinically characterized by absence, myoclonic, or generalized tonic-clonic seizures with electroencephalographic pattern of bilateral, synchronous, and symmetrical spike-and-wave discharges. Despite their strong heritability, the genetic basis of generalized epilepsies remains largely elusive. Nevertheless, recent advances in genetic technology have led to the identification of numerous genes and genomic defects in various types of epilepsies in the past few years. In the present study, we performed whole-exome sequencing in a family with GGE consistent with the diagnosis of eyelid myoclonia with absences. We found a nonsense variant (c.196C>T/p.(Arg66*)) in RORB, which encodes the beta retinoid-related orphan nuclear receptor (RORß), in four affected family members. In addition, two de novo variants (c.218T>C/p.(Leu73Pro); c.1249_1251delACG/p.(Thr417del)) were identified in sporadic patients by trio-based exome sequencing. We also found two de novo deletions in patients with behavioral and cognitive impairment and epilepsy: a 52-kb microdeletion involving exons 5-10 of RORB and a larger 9q21-microdeletion. Furthermore, we identified a patient with intellectual disability and a balanced translocation where one breakpoint truncates RORB and refined the phenotype of a recently reported patient with RORB deletion. Our data support the role of RORB gene variants/CNVs in neurodevelopmental disorders including epilepsy, and especially in generalized epilepsies with predominant absence seizures.


Subject(s)
Developmental Disabilities/genetics , Epilepsy, Generalized/genetics , Nuclear Receptor Subfamily 1, Group F, Member 2/genetics , Adult , Child , Chromosome Breakpoints , Chromosome Deletion , Codon, Nonsense , Developmental Disabilities/diagnosis , Epilepsy, Generalized/diagnosis , Exome , Exons , Female , Humans , Male , Pedigree , Syndrome , Translocation, Genetic
20.
BMC Med Genet ; 16: 102, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26542245

ABSTRACT

BACKGROUND: In humans, Mammalian Target of Rapamycin (MTOR) encodes a 300 kDa serine/ threonine protein kinase that is ubiquitously expressed, particularly at high levels in brain. MTOR functions as an integrator of multiple cellular processes, and in so doing either directly or indirectly regulates the phosphorylation of at least 800 proteins. While somatic MTOR mutations have been recognized in tumors for many years, and more recently in hemimegalencephaly, germline MTOR mutations have rarely been described. CASE PRESENTATION: We report the successful application of family-trio Diagnostic Exome Sequencing (DES) to identify the underlying molecular etiology in two brothers with multiple neurological and developmental lesions, and for whom previous testing was non-diagnostic. The affected brothers, who were 6 and 23 years of age at the time of DES, presented symptoms including but not limited to mild Autism Spectrum Disorder (ASD), megalencephaly, gross motor skill delay, cryptorchidism and bilateral iris coloboma. Importantly, we determined that each affected brother harbored the MTOR missense alteration p.E1799K (c.5395G>A). This exact variant has been previously identified in multiple independent human somatic cancer samples and has been shown to result in increased MTOR activation. Further, recent independent reports describe two unrelated families in whom p.E1799K co-segregated with megalencephaly and intellectual disability (ID); in both cases, p.E1799K was shown to have originated due to germline mosaicism. In the case of the family reported herein, the absence of p.E1799K in genomic DNA extracted from the blood of either parent suggests that this alteration most likely arose due to gonadal mosaicism. Further, the p.E1799K variant exerts its effect by a gain-of-function (GOF), autosomal dominant mechanism. CONCLUSION: Herein, we describe the use of DES to uncover an activating MTOR missense alteration of gonadal mosaic origin that is likely to be the causative mutation in two brothers who present multiple neurological and developmental abnormalities. Our report brings the total number of families who harbor MTOR p.E1799K in association with megalencephaly and ID to three. In each case, evidence suggests that p.E1799K arose in the affected individuals due to gonadal mosaicism. Thus, MTOR p.E1799K can now be classified as a pathogenic GOF mutation that causes megalencephaly and cognitive impairment in humans.


Subject(s)
Germ-Line Mutation , Megalencephaly/genetics , Mosaicism , TOR Serine-Threonine Kinases/genetics , Testis/physiology , Autistic Disorder/genetics , Child , Developmental Disabilities/genetics , Exome , High-Throughput Nucleotide Sequencing/methods , Humans , Intellectual Disability/genetics , Male , Sequence Analysis, DNA/methods , Siblings , Testis/pathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL