Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 12959, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839934

ABSTRACT

Temperature is a critical factor shaping physiology, life cycle, and behaviour of ectothermic vector insects, as well as the development and multiplication of pathogens within them. However, the influence of pathogen infections on thermal preferences (behavioural thermoregulation) is not well-understood. The present study examined the thermal preferences of mosquitoes (Aedes aegypti and Ae. japonicus) infected with either Sindbis virus (SINV) or Dirofilaria immitis over 12 days post exposure (p.e.) or injected with a non-pathogenic Sephadex bead over 24 h in a thermal gradient (15-30 °C). SINV-infected Ae. aegypti preferred 5 °C warmer temperatures than non-infected ones at day 6 p.e., probably the time of highest innate immune response. In contrast, D. immitis-infected Ae. japonicus preferred 4 °C cooler temperatures than non-infected ones at day 9 p.e., presumably a stress response during the migration of third instar larvae from their development site to the proboscis. Sephadex bead injection also induced a cold preference in the mosquitoes but to a level that did not differ from control-injections. The cold preference thus might be a strategy to escape the risk of desiccation caused by the wound created by piercing the thorax. Further research is needed to uncover the genetic and physiological mechanisms underlying these behaviours.


Subject(s)
Aedes , Temperature , Animals , Aedes/virology , Aedes/physiology , Aedes/immunology , Sindbis Virus/physiology , Dirofilaria immitis/physiology , Mosquito Vectors/virology , Mosquito Vectors/parasitology , Larva/physiology , Female , Body Temperature Regulation
2.
Sci Rep ; 14(1): 3659, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38351076

ABSTRACT

Temperature is a major ecological driver of mosquito-borne diseases as it influences the life-history of both the mosquito and the pathogen harboured within it. Understanding the mosquitoes' thermal biology is essential to inform risk prediction models of such diseases. Mosquitoes can respond to temperatures by microhabitat selection through thermal preference. However, it has not yet been considered that mosquitoes are likely to adapt to changing temperatures, for example during climate change, and alter their preference over evolutionary time. We investigated this by rearing six cohorts of the yellow fever mosquito Aedes aegypti at two temperatures (24 °C, 30 °C) for 20 generations and used these cohorts to explicitly separate the effects of long-term evolution and within-generation acclimation on their thermal preferences in a thermal gradient of 20-35 °C. We found that warm-evolved mosquitoes spent 31.5% less time at high temperatures, which affects their efficiency as a vector. This study reveals the complex interplay of experimental evolution, rearing temperatures, and thermal preference in Ae. aegypti mosquitoes. It highlights the significance of incorporating mosquito microhabitat selection in disease transmission models, especially in the context of climate change.


Subject(s)
Aedes , Yellow Fever , Animals , Temperature , Mosquito Vectors , Aedes/physiology , Climate Change
3.
Med Vet Entomol ; 37(3): 562-573, 2023 09.
Article in English | MEDLINE | ID: mdl-37052330

ABSTRACT

Mosquitoes (Diptera: Culicidae) and biting midges (Diptera: Ceratopogonidae) are among the most important vectors of human and veterinary pathogens. For modelling the distribution of these pathogens, entomological aspects are essential, which in turn are highly dependent on environmental factors, such as temperature. In this study, mosquitoes and biting midges were sampled in multiple microclimates at two low (360, 480 meters above sea level, m.a.s.l.) and two high (1250, 1530 m.a.s.l.) altitude locations in Switzerland. Sets of various traps (CO2 -baited CDC, LED-UV, resting boxes, oviposition cups) equipped with dataloggers were placed in transects at five sites with similar vegetation at each location. Only the CDC and the LED-UV traps collected enough insects for analyses. Taxonomic diversity was greater for mosquitoes but lower for biting midges at lower altitudes. Both mosquitoes and biting midges had a thermal preference. Culicoides preferred the traps with warmer microclimate, especially at lower altitudes, whereas mosquito preferences depended on the species, but not on altitude. Relative humidity had a significant positive impact on catches of biting midges but not mosquitoes. To obtain better data on thermal preferences of resting and ovipositing vectors in addition to host seeking individuals, new and improved collecting methods are needed.


Subject(s)
Ceratopogonidae , Culicidae , Female , Humans , Animals , Altitude , Switzerland , Mosquito Vectors
SELECTION OF CITATIONS
SEARCH DETAIL