ABSTRACT
An estimated 90 to 95% of Indigenous people in Amazonia died after European contact. This population collapse is postulated to have caused decreases in atmospheric carbon dioxide concentrations at around 1610 CE, as a result of a wave of land abandonment in the wake of disease, slavery, and warfare, whereby the attendant reversion to forest substantially increased terrestrial carbon sequestration. On the basis of 39 Amazonian fossil pollen records, we show that there was no synchronous reforestation event associated with such an atmospheric carbon dioxide response after European arrival in Amazonia. Instead, we find that, at most sites, land abandonment and forest regrowth began about 300 to 600 years before European arrival. Pre-European pandemics, social strife, or environmental change may have contributed to these early site abandonments and ecological shifts.
Subject(s)
Conservation of Natural Resources/history , Forests , Indigenous Peoples/history , Population Dynamics/history , Atmosphere/chemistry , Brazil , Carbon Dioxide/analysis , Europe , Fossils , History, 17th Century , Humans , Pollen/geneticsABSTRACT
Topological properties of physical systems play a crucial role in our understanding of nature, yet their experimental determination remains elusive. We show that the mean helicity, a dynamical invariant in ideal flows, quantitatively affects trajectories of fluid elements: the linking number of Lagrangian trajectories depends on the mean helicity. Thus, a global topological invariant and a topological number of fluid trajectories become related, and we provide an empirical expression linking them. The relation shows the existence of long-term memory in the trajectories: the links can be made of the trajectory up to a given time, with particles positions in the past. This property also allows experimental measurements of mean helicity.