Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Med Dosim ; 48(3): 134-139, 2023.
Article in English | MEDLINE | ID: mdl-37012163

ABSTRACT

Whole-brain radiotherapy (WBRT) can alleviate symptoms in patients with brain metastases. However, WBRT may damage the hippocampus. Volumetric modulated arc therapy (VMAT) can achieve a suitable coverage of the target region and a more conforming dose distribution whereas decreasing the dose to organs-at-risk (OARs). Herein, we aimed to compare the differences between treatment plans utilizing coplanar VMAT and noncoplanar VMAT in hippocampal-sparing WBRT (HS-WBRT). Ten patients were included in this study. For each patient, the Eclipse A10 treatment planning system was used to generate 1 coplanar VMAT (C-VMAT) and 2 noncoplanar VMAT treatment plans with various beam angles (noncoplanar VMAT A [NC-A] and noncoplanar VMAT B [NC-B]) for HS-WBRT. The prescribed dose was 30 Gy in 12 fractions. Treatment plans were established based on the OAR dose constraints of the Radiation Therapy Oncology Group 0933 (RTOG 0933). Parameters such as the global maximum dose, dose conformity, dose homogeneity of plans, and OAR doses were evaluated. The maximum biologically equivalent doses in 2-Gy fractions (EQD2) of OARs in C-VMAT were 9.17 ± 0.61, 42.79 ± 2.00, and 42.84 ± 3.52 Gy in the hippocampus, brain stem, and optic chiasm, respectively, which were the lowest among the 3 treatment plans. There was no significant difference in dose conformity among the 3 treatment plans. However, NC-A had a slightly better conformity than C-VMAT and NC-B. NC-A had the best homogeneity, and NC-B had the worst homogeneity (p = 0.042). NC-A and NC-B had the lowest and highest global dose maximum, respectively. Therefore, NC-A, which had an intermediate performance in terms of OAR doses, had the best quality parameters. We used the quality score table based on the p-value to evaluate the significant difference between each treatment technique from the multiparameter results. In terms of treatment plan parameters, only NC-A received a score of 2; for OAR doses, C-VMAT, NC-A, and NC-B received a score of 6, 3, and 5, respectively. For the overall evaluation, C-VMAT, NC-A, and NC-B received a total score of 6, 5, and 5, respectively. Rather than noncoplanar VMAT, 3 full-arc C-VMATs should be utilized in HS-WBRT. C-VMAT can simultaneously maintain treatment plan quality and decrease patient alignment time and total treatment time.

2.
PLoS One ; 12(1): e0169252, 2017.
Article in English | MEDLINE | ID: mdl-28046056

ABSTRACT

CyberKnife is one of multiple modalities for stereotactic radiosurgery (SRS). Due to the nature of CyberKnife and the characteristics of SRS, dose evaluation of the CyberKnife procedure is critical. A radiophotoluminescent glass dosimeter was used to verify the dose accuracy for the CyberKnife procedure and validate a viable dose verification system for CyberKnife treatment. A radiophotoluminescent glass dosimeter, thermoluminescent dosimeter, and Kodak EDR2 film were used to measure the lateral dose profile and percent depth dose of CyberKnife. A Monte Carlo simulation for dose verification was performed using BEAMnrc to verify the measured results. This study also used a radiophotoluminescent glass dosimeter coupled with an anthropomorphic phantom to evaluate the accuracy of the dose given by CyberKnife. Measurements from the radiophotoluminescent glass dosimeter were compared with the results of a thermoluminescent dosimeter and EDR2 film, and the differences found were less than 5%. The radiophotoluminescent glass dosimeter has some advantages in terms of dose measurements over CyberKnife, such as repeatability, stability, and small effective size. These advantages make radiophotoluminescent glass dosimeters a potential candidate dosimeter for the CyberKnife procedure. This study concludes that radiophotoluminescent glass dosimeters are a promising and reliable dosimeter for CyberKnife dose verification with clinically acceptable accuracy within 5%.


Subject(s)
Glass/chemistry , Radiation Dosimeters , Radiosurgery/instrumentation , Radiotherapy Dosage , Thermoluminescent Dosimetry/instrumentation , Computer Simulation , Feasibility Studies , Humans , Monte Carlo Method , Phantoms, Imaging , Reproducibility of Results
3.
Oral Oncol ; 49(1): 42-8, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22854066

ABSTRACT

OBJECTIVE: We investigated salivary function using quantitative scintigraphy and sought to identify functional correlations between parotid dose and quality of life (QoL) for head and neck cancer (HNC) patients receiving intensity-modulated radiotherapy (IMRT). MATERIALS AND METHODS: Between August, 2007 and June, 2008, 31 patients treated IMRT for HNC were enrolled in this prospective study. Salivary excretion function (SEF) was previously measured by salivary scintigraphy at annual intervals for 2 years after IMRT. A dose-volume histogram of each parotid gland was calculated, and the normal tissue complication probability (NTCP) was used to determine the tolerance dose. QoL was longitudinally assessed by the EORTC QLQ-C30 and H&N35 questionnaires prior to RT, and at one, three, 12 and 24 months after RT. RESULTS: A significant correlation was found between the reduction of SEF and the mean parotid dose measured at 1 year (correlation coefficient, R(2)=0.651) and 2 years (R(2)=0.310) after IMRT (p<0.001). The TD(50) of the parotid gland at 1 year after IMRT is 43.6 Gy, comparable to results from western countries. We further found that contralateral parotid and submandibular gland function preservation was correlated with reduced sticky saliva and a better QoL compared to the functional preservation of both parotid glands, as determined by the EORTC QLQ-H&N35 questionnaire. CONCLUSION: A significant correlation was found between the reduction of SEF and the mean parotid dose. Preservation of contralateral parotid and submandibular gland function predicts a better QoL compared to preservation of the function of both parotid glands.


Subject(s)
Head and Neck Neoplasms/radiotherapy , Parotid Gland/radiation effects , Quality of Life , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated , Saliva/radiation effects , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Chemotherapy, Adjuvant , Dose-Response Relationship, Radiation , Female , Follow-Up Studies , Humans , Longitudinal Studies , Male , Middle Aged , Neoadjuvant Therapy , Parotid Gland/diagnostic imaging , Parotid Gland/metabolism , Prospective Studies , Radionuclide Imaging , Radiotherapy, Computer-Assisted , Recovery of Function/radiation effects , Saliva/metabolism , Submandibular Gland/diagnostic imaging , Submandibular Gland/metabolism , Submandibular Gland/radiation effects , Xerostomia/diagnostic imaging , Xerostomia/etiology
4.
BMC Cancer ; 10: 508, 2010 Sep 23.
Article in English | MEDLINE | ID: mdl-20860847

ABSTRACT

BACKGROUND: To assess the factors affecting the incidence of radiation-induced dermatitis in breast cancer patients treated with adjuvant 3 D conformal radiotherapy by the analysis of dosimetry and topical treatments. METHODS: Between September 2002 and July 2009, 158 breast cancer patients were treated with adjuvant 3 D conformal radiotherapy after undergoing surgery. Before November 2006, 90 patients were subjected to therapeutic skin care group and topical corticosteroid therapy was used for acute radiation dermatitis. Thereafter, 68 patients received prophylactic topical therapy from the beginning of radiotherapy. The two groups did not differ significantly in respect of clinical and treatment factors. Furthermore, the possible mechanisms responsible for the effects of topical treatment on radiation-induced dermatitis were investigated in vivo. RESULTS: The incidence of radiation-induced moist desquamation was 23% across 158 patients. Higher volume receiving 107% of prescribed dose within PTV (PTV-V107%; >28.6%) and volume receiving 110% of prescribed dose within treated volume (TV-V110%; > 5.13%), and no prophylactic topical therapy for irradiated skin, were associated with higher incidence of acute radiation dermatitis. The protective effect of prophylactic topical treatment was more pronounced in patients with TV-V110% > 5.13%. Furthermore, using irradiated mice, we demonstrated that topical steroid cream significantly attenuated irradiation-induced inflammation, causing a decrease in expression of inflammatory cytokines and TGF-beta 1. CONCLUSION: TV-V110% > 5.13% may be an important predictor for radiation induced dermatitis. Prophylactic topical treatment for irradiated skin can significantly improve the tolerance of skin to adjuvant radiotherapy, especially for patients with higher TV-V110%.


Subject(s)
Breast Neoplasms/diagnosis , Breast Neoplasms/radiotherapy , Adult , Aged , Aged, 80 and over , Animals , Female , Humans , Male , Mice , Mice, Inbred BALB C , Middle Aged , Radiation Injuries/prevention & control , Radiotherapy/methods , Radiotherapy, Conformal/methods , Recurrence , Retrospective Studies , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...