Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
J Med Chem ; 64(21): 15549-15581, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34709814

ABSTRACT

The oxycyclohexyl acid BMS-986278 (33) is a potent lysophosphatidic acid receptor 1 (LPA1) antagonist, with a human LPA1 Kb of 6.9 nM. The structure-activity relationship (SAR) studies starting from the LPA1 antagonist clinical compound BMS-986020 (1), which culminated in the discovery of 33, are discussed. The detailed in vitro and in vivo preclinical pharmacology profiles of 33, as well as its pharmacokinetics/metabolism profile, are described. On the basis of its in vivo efficacy in rodent chronic lung fibrosis models and excellent overall ADME (absorption, distribution, metabolism, excretion) properties in multiple preclinical species, 33 was advanced into clinical trials, including an ongoing Phase 2 clinical trial in patients with lung fibrosis (NCT04308681).


Subject(s)
Drug Discovery , Pulmonary Fibrosis/drug therapy , Receptors, Lysophosphatidic Acid/antagonists & inhibitors , Animals , Dose-Response Relationship, Drug , Male , Mice , Molecular Structure , Pulmonary Fibrosis/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Lysophosphatidic Acid/metabolism , Structure-Activity Relationship
2.
J Med Chem ; 57(18): 7499-508, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25208139

ABSTRACT

G-protein-coupled receptor 119 (GPR119) is expressed predominantly in pancreatic ß-cells and in enteroendocrine cells in the gastrointestinal tract. GPR119 agonists have been shown to stimulate glucose-dependent insulin release by direct action in the pancreas and to promote secretion of the incretin GLP-1 by action in the gastrointestinal tract. This dual mechanism of action has generated significant interest in the discovery of small molecule GPR119 agonists as a potential new treatment for type 2 diabetes. Herein, we describe the discovery and optimization of a new class of pyridone containing GPR119 agonists. The potent and selective BMS-903452 (42) was efficacious in both acute and chronic in vivo rodent models of diabetes. Dosing of 42 in a single ascending dose study in normal healthy humans showed a dose dependent increase in exposure and a trend toward increased total GLP-1 plasma levels.


Subject(s)
Drug Discovery , Hypoglycemic Agents/pharmacology , Molecular Targeted Therapy , Pyridones/pharmacology , Receptors, G-Protein-Coupled/metabolism , Sulfones/pharmacology , Animals , Clinical Trials as Topic , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Drug Design , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/therapeutic use , Male , Mice , Models, Molecular , Protein Conformation , Pyridones/chemistry , Pyridones/pharmacokinetics , Pyridones/therapeutic use , Rats , Rats, Sprague-Dawley , Receptors, G-Protein-Coupled/chemistry , Sulfones/chemistry , Sulfones/pharmacokinetics , Sulfones/therapeutic use
3.
Bioorg Med Chem Lett ; 23(13): 3914-9, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23683593

ABSTRACT

The 5-HT2C receptor has been implicated as a critical regulator of appetite. Small molecule activation of the 5-HT2C receptor has been shown to affect food intake and regulate body weight gain in rodent models and more recently in human clinical trials. Therefore, 5-HT2C is a well validated target for anti-obesity therapy. The synthesis and structure-activity relationships of a series of novel tetrahydropyrazinoisoquinolinone 5-HT2C receptor agonists are presented. Several members of this series were identified as potent 5-HT2C receptor agonists with high functional selectivity against the 5-HT2A and 5-HT2B receptors and reduced food intake in an acute rat feeding model upon oral dosing.


Subject(s)
Isoquinolines/pharmacology , Pyrazines/pharmacology , Receptor, Serotonin, 5-HT2C/metabolism , Animals , Crystallography, X-Ray , Dose-Response Relationship, Drug , Eating/drug effects , Humans , Isoquinolines/chemical synthesis , Isoquinolines/chemistry , Models, Molecular , Molecular Structure , Pyrazines/chemical synthesis , Pyrazines/chemistry , Rats , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 23(1): 330-5, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23177783
5.
Bioorg Med Chem Lett ; 20(3): 1128-33, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20022752

ABSTRACT

Agonists of the 5-HT(2C) receptor have been shown to suppress appetite and reduce body weight in animal models as well as in humans. However, agonism of the related 5-HT(2B) receptor has been associated with valvular heart disease. Synthesis and biological evaluation of a series of novel and highly selective dihydroquinazolinone-derived 5-HT(2C) agonists with no detectable agonism of the 5-HT(2B) receptor is described. Among these, compounds (+)-2a and (+)-3c were identified as potent and highly selective agonists which exhibited weight loss in a rat model upon oral dosing.


Subject(s)
Anti-Obesity Agents/chemistry , Obesity/drug therapy , Quinazolinones/chemistry , Serotonin 5-HT2 Receptor Agonists , Serotonin Receptor Agonists/chemistry , Administration, Oral , Animals , Anti-Obesity Agents/administration & dosage , Anti-Obesity Agents/metabolism , Eating/drug effects , Eating/physiology , Humans , Male , Obesity/metabolism , Protein Binding/physiology , Quinazolinones/administration & dosage , Rats , Rats, Sprague-Dawley , Receptor, Serotonin, 5-HT2C/metabolism , Serotonin Receptor Agonists/administration & dosage , Serotonin Receptor Agonists/metabolism
6.
J Med Chem ; 50(6): 1365-79, 2007 Mar 22.
Article in English | MEDLINE | ID: mdl-17315987

ABSTRACT

Robust pharmaceutical treatment of obesity has been limited by the undesirable side-effect profile of currently marketed therapies. This paper describes the synthesis and optimization of a new class of pyrazinoisoindolone-containing, selective 5-HT2C agonists as antiobesity agents. Key to optimization of the pyrazinoisoindolone core was the identification of the appropriate substitution pattern and functional groups which led to the discovery of (R)-9-ethyl-1,3,4,10b-tetrahydro-7-trifluoromethylpyrazino[2,1-a]isoindol-6(2H)-one (58), a 5-HT2C agonist with >300-fold functional selectivity over 5-HT2B and >70-fold functional selectivity over 5-HT2A. Oral dosing of 58 reduced food intake in an acute rat feeding model, which could be completely reversed by a selective 5-HT2C antagonist and caused a reduction in body weight gain in a 4-day rat model.


Subject(s)
Anti-Obesity Agents/chemical synthesis , Indoles/chemical synthesis , Pyrazines/chemical synthesis , Serotonin 5-HT2 Receptor Agonists , Administration, Oral , Animals , Anti-Obesity Agents/chemistry , Anti-Obesity Agents/pharmacology , Blood-Brain Barrier/metabolism , Cell Line , Conditioning, Operant , Feeding Behavior/drug effects , Humans , Indoles/chemistry , Indoles/pharmacology , Isoindoles , Male , Mice , Necrosis , Parietal Cells, Gastric/drug effects , Parietal Cells, Gastric/pathology , Pyrazines/chemistry , Pyrazines/pharmacology , Radioligand Assay , Rats , Rats, Sprague-Dawley , Stereoisomerism , Weight Gain/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL