Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 43(4): 114078, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38598334

ABSTRACT

The vaginal microbiome's composition varies among ethnicities. However, the evolutionary landscape of the vaginal microbiome in the multi-ethnic context remains understudied. We perform a systematic evolutionary analysis of 351 vaginal microbiome samples from 35 multi-ethnic pregnant women, in addition to two validation cohorts, totaling 462 samples from 90 women. Microbiome alpha diversity and community state dynamics show strong ethnic signatures. Lactobacillaceae have a higher ratio of non-synonymous to synonymous polymorphism and lower nucleotide diversity than non-Lactobacillaceae in all ethnicities, with a large repertoire of positively selected genes, including the mucin-binding and cell wall anchor genes. These evolutionary dynamics are driven by the long-term evolutionary process unique to the human vaginal niche. Finally, we propose an evolutionary model reflecting the environmental niches of microbes. Our study reveals the extensive ethnic signatures in vaginal microbial ecology and evolution, highlighting the importance of studying the host-microbiome ecosystem from an evolutionary perspective.


Subject(s)
Lactobacillus , Microbiota , Vagina , Humans , Vagina/microbiology , Female , Microbiota/genetics , Lactobacillus/genetics , Adhesins, Bacterial/genetics , Ethnicity/genetics , Adult , Evolution, Molecular , Pregnancy , Selection, Genetic , Biological Evolution
2.
Cell Host Microbe ; 30(6): 848-862.e7, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35483363

ABSTRACT

Dietary fibers act through the microbiome to improve cardiovascular health and prevent metabolic disorders and cancer. To understand the health benefits of dietary fiber supplementation, we investigated two popular purified fibers, arabinoxylan (AX) and long-chain inulin (LCI), and a mixture of five fibers. We present multiomic signatures of metabolomics, lipidomics, proteomics, metagenomics, a cytokine panel, and clinical measurements on healthy and insulin-resistant participants. Each fiber is associated with fiber-dependent biochemical and microbial responses. AX consumption associates with a significant reduction in LDL and an increase in bile acids, contributing to its observed cholesterol reduction. LCI is associated with an increase in Bifidobacterium. However, at the highest LCI dose, there is increased inflammation and elevation in the liver enzyme alanine aminotransferase. This study yields insights into the effects of fiber supplementation and the mechanisms behind fiber-induced cholesterol reduction, and it shows effects of individual, purified fibers on the microbiome.


Subject(s)
Dietary Fiber , Inulin , Bifidobacterium , Bile Acids and Salts , Cholesterol , Dietary Fiber/metabolism , Humans , Inulin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL