Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters











Publication year range
1.
bioRxiv ; 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39386632

ABSTRACT

Myeloid phagocytes are essential for antifungal immunity against pulmonary Aspergillus fumigatus and systemic Candida albicans infections. However, the molecular mechanisms underlying fungal clearance by phagocytes remain incompletely understood. In this study, we investigated the role of perforin-2 ( Mpeg1 ) in antifungal immunity. We found that Mpeg1 -/- mice generated on a mixed C57BL/6J-DBA/2 background exhibited enhanced survival, reduced lung fungal burden, and greater neutrophil fungal killing activity compared to wild-type C57BL/6J (B6) mice, suggesting that perforin-2 may impair antifungal immune responses. However, when we compared Mpeg1 -/- mice with co-housed Mpeg +/+ littermate controls, these differences were no longer observed, indicating that initial findings were likely influenced by differences in the murine genetic background or the microbiota composition. Furthermore, perforin-2 was dispensable for antifungal immunity during C. albicans bloodstream infection. These results suggest that perforin-2 is not essential for host defense against fungal infections in otherwise immune competent mice and highlight the importance of generating co-housed littermate controls to minimize murine genetic and microbiota-related factors in studies of host defense mechanisms. IMPORTANCE: Aspergillus fumigatus is the leading cause of invasive aspergillosis (IA), which is associated with significant mortality, particularly in immunocompromised patients such as those with acute leukemia or undergoing hematopoietic stem cell transplants, where death rates reach 40-50% despite standard care. Treatments for IA remain limited and resistance to antifungals is emerging, leading the World Health Organization to recently classify A. fumigatus as a critical priority fungal pathogen. A greater understanding of how the immune system clears A. fumigatus could lead to host-directed therapies that could complement our current armamentarium of antifungal drugs and improve patient outcomes. Our findings reveal that perforin-2 is not essential for antifungal immunity against A. fumigatus in otherwise immune-competent mice and underscore the necessity of using co-housed littermate controls to avoid confounding factors in immunological studies.

2.
Nat Immunol ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39354200

ABSTRACT

Skin uses interdependent cellular networks for barrier integrity and host immunity, but most underlying mechanisms remain obscure. Herein, we demonstrate that the human parasitic helminth Schistosoma mansoni inhibited pruritus evoked by itch-sensing afferents bearing the Mas-related G-protein-coupled receptor A3 (MrgprA3) in mice. MrgprA3 neurons controlled interleukin (IL)-17+ γδ T cell expansion, epidermal hyperplasia and host resistance against S. mansoni through shaping cytokine expression in cutaneous antigen-presenting cells. MrgprA3 neuron activation downregulated IL-33 but induced IL-1ß and tumor necrosis factor in macrophages and type 2 conventional dendritic cells partially through the neuropeptide calcitonin gene-related peptide. Macrophages exposed to MrgprA3-derived secretions or bearing cell-intrinsic IL-33 deletion showed increased chromatin accessibility at multiple inflammatory cytokine loci, promoting IL-17/IL-23-dependent changes to the epidermis and anti-helminth resistance. This study reveals a previously unrecognized intercellular communication mechanism wherein itch-inducing MrgprA3 neurons initiate host immunity against skin-invasive parasites by directing cytokine expression patterns in myeloid antigen-presenting cell subsets.

3.
Mucosal Immunol ; 17(2): 238-256, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38336020

ABSTRACT

Host defense at the mucosal interface requires collaborative interactions between diverse cell lineages. Epithelial cells damaged by microbial invaders release reparative proteins such as the Trefoil factor family (TFF) peptides that functionally restore barrier integrity. However, whether TFF peptides and their receptors also serve instructive roles for immune cell function during infection is incompletely understood. Here, we demonstrate that the intestinal trefoil factor, TFF3, restrains (T cell helper) TH1 cell proliferation and promotes host-protective type 2 immunity against the gastrointestinal parasitic nematode Trichuris muris. Accordingly, T cell-specific deletion of the TFF3 receptor, leucine-rich repeat and immunoglobulin containing nogo receptor 2 (LINGO2), impairs TH2 cell commitment, allows proliferative expansion of interferon (IFN)g+ cluster of differentiation (CD)4+ TH1 cells and blocks normal worm expulsion through an IFNg-dependent mechanism. This study indicates that TFF3, in addition to its known tissue reparative functions, drives anti-helminth immunity by controlling the balance between TH1/TH2 subsets.


Subject(s)
Communicable Diseases , Gastrointestinal Diseases , Nematoda , Nematode Infections , Trichuriasis , Animals , Trefoil Factor-3 , Th1 Cells , T-Lymphocytes, Helper-Inducer
4.
Res Sq ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38076920

ABSTRACT

Skin employs interdependent cellular networks to facilitate barrier integrity and host immunity through ill-defined mechanisms. This study demonstrates that manipulation of itch-sensing neurons bearing the Mas-related G protein-coupled receptor A3 (MrgprA3) drives IL-17+ γδ T cell expansion, epidermal thickening, and resistance to the human pathogen Schistosoma mansoni through mechanisms that require myeloid antigen presenting cells (APC). Activated MrgprA3 neurons instruct myeloid APCs to downregulate interleukin 33 (IL-33) and up-regulate TNFα partially through the neuropeptide calcitonin gene related peptide (CGRP). Strikingly, cell-intrinsic deletion of IL-33 in myeloid APC basally alters chromatin accessibility at inflammatory cytokine loci and promotes IL-17/23-dependent epidermal thickening, keratinocyte hyperplasia, and resistance to helminth infection. Our findings reveal a previously undescribed mechanism of intercellular cross-talk wherein "itch" neuron activation reshapes myeloid cytokine expression patterns to alter skin composition for cutaneous immunity against invasive pathogens.

5.
bioRxiv ; 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37461610

ABSTRACT

The authors have withdrawn this manuscript owing to inaccuracies in the calculation of tuft cell numbers and errors in the selection of immunofluorescence images used to support our claims. Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author.

6.
Nat Commun ; 13(1): 2786, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35589717

ABSTRACT

Antigen encounter directs CD4+ T cells to differentiate into T helper or regulatory cells. This process focuses the immune response on the invading pathogen and limits tissue damage. Mechanisms that govern T helper cell versus T regulatory cell fate remain poorly understood. Here, we show that the E3 ubiquitin ligase Cul5 determines fate selection in CD4+ T cells by regulating IL-4 receptor signaling. Mice lacking Cul5 in T cells develop Th2 and Th9 inflammation and show pathophysiological features of atopic asthma. Following T cell activation, Cul5 forms a complex with CIS and pJak1. Cul5 deletion reduces ubiquitination and subsequent degradation of pJak1, leading to an increase in pJak1 and pSTAT6 levels and reducing the threshold of IL-4 receptor signaling. As a consequence, Cul5 deficient CD4+ T cells deviate from Treg to Th9 differentiation in low IL-4 conditions. These data support the notion that Cul5 promotes a tolerogenic T cell fate choice and reduces susceptibility to allergic asthma.


Subject(s)
Asthma , Ubiquitin , Animals , Inflammation , Lymphocyte Activation , Mice , Receptors, Interleukin-4 , T-Lymphocytes, Helper-Inducer , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
7.
PLoS Negl Trop Dis ; 15(10): e0009550, 2021 10.
Article in English | MEDLINE | ID: mdl-34662329

ABSTRACT

Helminth infections, including hookworms and Schistosomes, can cause severe disability and death. Infection management and control would benefit from identification of biomarkers for early detection and prognosis. While animal models suggest that Trefoil Factor Family proteins (TFF2 and TFF3) and interleukin-33 (IL-33) -driven type 2 immune responses are critical mediators of tissue repair and worm clearance in the context of hookworm infection, very little is known about how they are modulated in the context of human helminth infection. We measured TFF2, TFF3, and IL-33 levels in serum from patients in Brazil infected with Hookworm and/or Schistosomes, and compared them to endemic and non-endemic controls. TFF2 was specifically elevated by Hookworm infection in females, not Schistosoma or co-infection. This elevation was correlated with age, but not worm burden. TFF3 was elevated by Schistosoma infection and found to be generally higher in females. IL-33 was not significantly altered by infection. To determine if this might apply more broadly to other species or regions, we measured TFFs and cytokine levels (IFNγ, TNFα, IL-33, IL-13, IL-1ß, IL-17A, IL-22, and IL-10) in both the serum and urine of Nigerian school children infected with S. haematobium. We found that serum levels of TFF2 and 3 were reduced by infection, likely in an age dependent manner. In the serum, only IL-10 and IL-13 were significantly increased, while in urine IFN-γ, TNF-α, IL-13, IL-1ß, IL-22, and IL-10 were significantly increased in by infection. Taken together, these data support a role for TFF proteins in human helminth infection.


Subject(s)
Helminthiasis/blood , Helminths/classification , Helminths/physiology , Trefoil Factor-2/blood , Trefoil Factor-3/blood , Adolescent , Adult , Age Factors , Animals , Brazil , Child , Cohort Studies , Female , Helminthiasis/parasitology , Helminths/genetics , Humans , Interferon-gamma/blood , Interleukin-10/blood , Interleukin-33/blood , Male , Middle Aged , Species Specificity , Tumor Necrosis Factor-alpha/blood , Young Adult
8.
PLoS Pathog ; 17(7): e1009709, 2021 07.
Article in English | MEDLINE | ID: mdl-34237106

ABSTRACT

Helminths are distinct from microbial pathogens in both size and complexity, and are the likely evolutionary driving force for type 2 immunity. CD4+ helper T cells can both coordinate worm clearance and prevent immunopathology, but issues of T cell antigen specificity in the context of helminth-induced Th2 and T regulatory cell (Treg) responses have not been addressed. Herein, we generated a novel transgenic line of the gastrointestinal nematode Strongyloides ratti expressing the immunodominant CD4+ T cell epitope 2W1S as a fusion protein with green fluorescent protein (GFP) and FLAG peptide in order to track and study helminth-specific CD4+ T cells. C57BL/6 mice infected with this stable transgenic line (termed Hulk) underwent a dose-dependent expansion of activated CD44hiCD11ahi 2W1S-specific CD4+ T cells, preferentially in the lung parenchyma. Transcriptional profiling of 2W1S-specific CD4+ T cells isolated from mice infected with either Hulk or the enteric bacterial pathogen Salmonella expressing 2W1S revealed that pathogen context exerted a dominant influence over CD4+ T cell phenotype. Interestingly, Hulk-elicited 2W1S-specific CD4+ T cells exhibited both Th2 and Treg phenotypes and expressed high levels of the EGFR ligand amphiregulin, which differed greatly from the phenotype of 2W1S-specific CD4+ T cells elicited by 2W1S-expressing Salmonella. While immunization with 2W1S peptide did not enhance clearance of Hulk infection, immunization did increase total amphiregulin production as well as the number of amphiregulin-expressing CD3+ cells in the lung following Hulk infection. Altogether, this new model system elucidates effector as well as immunosuppressive and wound reparative roles of helminth-specific CD4+ T cells. This report establishes a new resource for studying the nature and function of helminth-specific T cells.


Subject(s)
Epitopes, T-Lymphocyte/genetics , Strongyloidiasis/immunology , T-Lymphocytes, Regulatory/immunology , Th2 Cells/immunology , Animals , Animals, Genetically Modified , Antigens, Helminth , CD4-Positive T-Lymphocytes/immunology , Disease Models, Animal , Epitopes, T-Lymphocyte/immunology , Mice , Mice, Inbred C57BL , Strongyloides ratti/immunology
9.
Scand J Gastroenterol ; 56(7): 791-805, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33941035

ABSTRACT

Aim: Recovery of damaged mucosal surfaces following inflammatory insult requires diverse regenerative mechanisms that remain poorly defined. Previously, we demonstrated that the reparative actions of Trefoil Factor 3 (TFF3) depend upon the enigmatic receptor, leucine rich repeat and immunoglobulin-like domain containing nogo receptor 2 (LINGO2). This study examined the related orphan receptor LINGO3 in the context of intestinal tissue damage to determine whether LINGO family members are generally important for mucosal wound healing and maintenance of the intestinal stem cell (ISC) compartment needed for turnover of mucosal epithelium.Methods and Results: We find that LINGO3 is broadly expressed on human enterocytes and sparsely on discrete cells within the crypt niche, that contains ISCs. Loss of function studies indicate that LINGO3 is involved in recovery of normal intestinal architecture following dextran sodium sulfate (DSS)-induced colitis, and that LINGO3 is needed for therapeutic action of the long acting TFF2 fusion protein (TFF2-Fc), including a number of signaling pathways critical for cell proliferation and wound repair. LINGO3-TFF2 protein-protein interactions were relatively weak however and LINGO3 was only partially responsible for TFF2 induced MAPK signaling suggesting additional un-identified components of a receptor complex. However, deficiency in either TFF2 or LINGO3 abrogated budding/growth of intestinal organoids and reduced expression of the intestinal ISC gene leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), indicating homologous roles for these proteins in tissue regeneration, possibly via regulation of ISCs in the crypt niche.Conclusion: We propose that LINGO3 serves a previously unappreciated role in promoting mucosal wound healing.


Subject(s)
Colitis , Intestinal Mucosa , Humans , Organoids , Trefoil Factor-2 , Wound Healing
10.
Am J Pathol ; 191(2): 266-273, 2021 02.
Article in English | MEDLINE | ID: mdl-33245913

ABSTRACT

IL-33 is an IL-1 family cytokine that signals through its cognate receptor, ST2, to regulate inflammation. Whether IL-33 serves a pathogenic or protective role during inflammatory bowel disease is controversial. Herein, two different strains of cell-specific conditionally deficient mice were used to compare the role of myeloid- versus intestinal epithelial cell-derived IL-33 during dextran sodium sulfate-induced colitis. Data show that loss of CD11c-restricted IL-33 exacerbated tissue pathology, coinciding with increased tissue Il6 levels and loss of intestinal forkhead box p3+ regulatory T cells. Surprisingly, the lack of intestinal epithelial cell-derived IL-33 had no impact on disease severity or tissue recovery. Thus, we show that myeloid-derived IL-33 functionally restrains colitic disease, whereas intestinal epithelial cell-derived IL-33 is dispensable.


Subject(s)
Colitis/immunology , Colitis/pathology , Interleukin-33/metabolism , Myeloid Cells/immunology , Animals , Colitis/chemically induced , Dextran Sulfate/toxicity , Epithelial Cells/immunology , Epithelial Cells/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice , Mice, Knockout , Myeloid Cells/metabolism
11.
Sci Immunol ; 5(53)2020 11 13.
Article in English | MEDLINE | ID: mdl-33188058

ABSTRACT

Interleukin-33 (IL-33) is a pleiotropic cytokine that can promote type 2 inflammation but also drives immunoregulation through Foxp3+Treg expansion. How IL-33 is exported from cells to serve this dual role in immunosuppression and inflammation remains unclear. Here, we demonstrate that the biological consequences of IL-33 activity are dictated by its cellular source. Whereas IL-33 derived from epithelial cells stimulates group 2 innate lymphoid cell (ILC2)-driven type 2 immunity and parasite clearance, we report that IL-33 derived from myeloid antigen-presenting cells (APCs) suppresses host-protective inflammatory responses. Conditional deletion of IL-33 in CD11c-expressing cells resulted in lowered numbers of intestinal Foxp3+Treg cells that express the transcription factor GATA3 and the IL-33 receptor ST2, causing elevated IL-5 and IL-13 production and accelerated anti-helminth immunity. We demonstrate that cell-intrinsic IL-33 promoted mouse dendritic cells (DCs) to express the pore-forming protein perforin-2, which may function as a conduit on the plasma membrane facilitating IL-33 export. Lack of perforin-2 in DCs blocked the proliferative expansion of the ST2+Foxp3+Treg subset. We propose that perforin-2 can provide a plasma membrane conduit in DCs that promotes the export of IL-33, contributing to mucosal immunoregulation under steady-state and infectious conditions.


Subject(s)
Dendritic Cells/immunology , Interleukin-33/metabolism , Membrane Proteins/metabolism , Strongylida Infections/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Cell Membrane/metabolism , Chronic Disease , Dendritic Cells/metabolism , Disease Models, Animal , Female , Humans , Immune Tolerance , Immunity, Innate , Immunity, Mucosal , Interleukin-33/analysis , Interleukin-33/genetics , Male , Mice , Mice, Transgenic , Nasal Mucosa/immunology , Nasal Mucosa/pathology , Nasal Polyps/immunology , Nasal Polyps/pathology , Nematospiroides dubius/immunology , Nippostrongylus/immunology , Pore Forming Cytotoxic Proteins , Rhinitis/immunology , Rhinitis/pathology , Sinusitis/immunology , Sinusitis/pathology , Strongylida Infections/parasitology , T-Lymphocytes, Regulatory/metabolism
12.
Nat Commun ; 10(1): 4408, 2019 09 27.
Article in English | MEDLINE | ID: mdl-31562318

ABSTRACT

Intestinal epithelial cells (IEC) have important functions in nutrient absorption, barrier integrity, regeneration, pathogen-sensing, and mucus secretion. Goblet cells are a specialized cell type of IEC that secrete Trefoil factor 3 (TFF3) to regulate mucus viscosity and wound healing, but whether TFF3-responsiveness requires a receptor is unclear. Here, we show that leucine rich repeat receptor and nogo-interacting protein 2 (LINGO2) is essential for TFF3-mediated functions. LINGO2 immunoprecipitates with TFF3, co-localizes with TFF3 on the cell membrane of IEC, and allows TFF3 to block apoptosis. We further show that TFF3-LINGO2 interactions disrupt EGFR-LINGO2 complexes resulting in enhanced EGFR signaling. Excessive basal EGFR activation in Lingo2 deficient mice increases disease severity during colitis and augments immunity against helminth infection. Conversely, TFF3 deficiency reduces helminth immunity. Thus, TFF3-LINGO2 interactions de-repress inhibitory LINGO2-EGFR complexes, allowing TFF3 to drive wound healing and immunity.


Subject(s)
Colitis/immunology , ErbB Receptors/immunology , Helminthiasis/immunology , Intestinal Mucosa/immunology , Membrane Proteins/metabolism , Nerve Tissue Proteins/immunology , Trefoil Factor-3/immunology , Animals , Cell Line, Tumor , Colitis/chemically induced , Colitis/metabolism , Dextran Sulfate , ErbB Receptors/genetics , ErbB Receptors/metabolism , Goblet Cells/immunology , Goblet Cells/metabolism , Goblet Cells/parasitology , HEK293 Cells , Helminthiasis/metabolism , Helminthiasis/parasitology , Helminths/immunology , Helminths/physiology , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/parasitology , Membrane Proteins/genetics , Mice, Inbred C57BL , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Organophosphonates , Trefoil Factor-3/genetics , Trefoil Factor-3/metabolism , U937 Cells
13.
J Immunol ; 203(2): 511-519, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31175162

ABSTRACT

Whether conventional dendritic cells (cDC) acquire subset identity under direction of Wnt family glycoproteins is unknown. We demonstrate that Wnt4, a ß-catenin-independent Wnt ligand, is produced by both hematopoietic and nonhematopoietic cells and is both necessary and sufficient for preconventional DC1/cDC1 maintenance. Whereas bone marrow cDC precursors undergo phosphoJNK/c-Jun activation upon Wnt4 treatment, loss of cDC Wnt4 in CD11cCreWnt4flox/flox mice impaired differentiation of CD24+, Clec9A+, CD103+ cDC1 compared with CD11cCre controls. Conversely, single-cell RNA sequencing analysis of bone marrow revealed a 2-fold increase in cDC2 gene signature genes, and flow cytometry demonstrated increased numbers of SIRP-α+ cDC2 amid lack of Wnt4. Increased cDC2 numbers due to CD11c-restricted Wnt4 deficiency increased IL-5 production, group 2 innate lymphoid cell expansion, and host resistance to the hookworm parasite Nippostrongylus brasiliensis Collectively, these data uncover a novel and unexpected role for Wnt4 in cDC subset differentiation and type 2 immunity.


Subject(s)
Dendritic Cells/immunology , Immunity, Innate/immunology , Wnt4 Protein/immunology , Animals , Antigens, CD/immunology , CD11c Antigen/immunology , CD24 Antigen/immunology , Cell Differentiation/immunology , Flow Cytometry/methods , Integrin alpha Chains/immunology , Lymphocytes/immunology , Mice , Signal Transduction/immunology , beta Catenin/immunology
14.
Mucosal Immunol ; 12(1): 64-76, 2019 01.
Article in English | MEDLINE | ID: mdl-30337651

ABSTRACT

Coordinated efforts between macrophages and epithelia are considered essential for wound healing, but the macrophage-derived molecules responsible for repair are poorly defined. This work demonstrates that lung macrophages rely upon Trefoil factor 2 to promote epithelial proliferation following damage caused by sterile wounding, Nippostrongylus brasiliensis or Bleomycin sulfate. Unexpectedly, the presence of T, B, or ILC populations was not essential for macrophage-driven repair. Instead, conditional deletion of TFF2 in myeloid-restricted CD11cCre TFF2 flox mice exacerbated lung pathology and reduced the proliferative expansion of CD45- EpCAM+ pro-SPC+ alveolar type 2 cells. TFF2 deficient macrophages had reduced expression of the Wnt genes Wnt4 and Wnt16 and reconstitution of hookworm-infected CD11cCre TFF2flox mice with rWnt4 and rWnt16 restored the proliferative defect in lung epithelia post-injury. These data reveal a previously unrecognized mechanism wherein lung myeloid phagocytes utilize a TFF2/Wnt axis as a mechanism that drives epithelial proliferation following lung injury.


Subject(s)
Lung Injury/immunology , Lung/immunology , Macrophages/physiology , Nippostrongylus/immunology , Respiratory Mucosa/physiology , Strongylida Infections/immunology , Trefoil Factor-2/metabolism , Animals , Bleomycin , CD11c Antigen/metabolism , Cell Communication , Cell Proliferation , Cells, Cultured , Humans , Lung/pathology , Lung Injury/chemically induced , Lung Injury/parasitology , Mice , Mice, Inbred C57BL , Mice, Knockout , Trefoil Factor-2/genetics , Wound Healing
15.
J Allergy Clin Immunol ; 142(2): 460-469.e7, 2018 08.
Article in English | MEDLINE | ID: mdl-29778504

ABSTRACT

BACKGROUND: IL-25 can function as an early signal for the respiratory type 2 response characteristic of allergic asthma and chronic rhinosinusitis with nasal polyps (CRSwNP). In the mouse gut, tuft cells are the epithelial source of IL-25. However, the source of human airway epithelial IL-25 has remained elusive. OBJECTIVE: In this study we sought to determine whether the solitary chemosensory cell (SCC) is the predominant source of IL-25 in the sinonasal epithelium. METHOD: Flow cytometry and immunofluorescence for SCCs and IL-25 were used to interrogate polyp and turbinate tissue from patients with CRSwNP. Mucus was collected during acute inflammatory exacerbations from patients with CRSwNP or chronic rhinosinusitis without nasal polyps and IL-25 levels determined by using ELISA. Lastly, sinonasal epithelial cultures derived from polyp and turbinate tissue were stimulated with IL-13 and analyzed for SCC proliferation and IL-25 production. RESULTS: This study demonstrates that a discrete cell type, likely an SCC, characterized by expression of the taste-associated G protein gustducin and the intestinal tuft cell marker doublecortin-like kinase 1, is the predominant source of IL-25 in the human upper airway. Additionally, we show that patients with CRSwNP have increased numbers of SCCs in nasal polyp tissue and that in vitro IL-13 exposure both increased proliferation and induced apical secretion of IL-25 into the mucosal layer. CONCLUSIONS: Inflammatory sinus polyps but not adjacent turbinate tissue show expansion of the SCC population, which is the source of epithelial IL-25.


Subject(s)
Chemoreceptor Cells/physiology , Interleukin-17/metabolism , Nasal Polyps/immunology , Paranasal Sinuses/pathology , Respiratory Mucosa/physiology , Rhinitis/immunology , Sinusitis/immunology , Animals , Cells, Cultured , Chronic Disease , Doublecortin-Like Kinases , Flow Cytometry , Humans , Interleukin-13/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Protein Serine-Threonine Kinases/metabolism , Taste/physiology , Transducin/metabolism
16.
Am J Pathol ; 188(5): 1161-1170, 2018 05.
Article in English | MEDLINE | ID: mdl-29458008

ABSTRACT

Trefoil factors (TFFs) are small secreted proteins that regulate tissue integrity and repair at mucosal surfaces, particularly in the gastrointestinal tract. However, their relative contribution(s) to controlling baseline lung function or the extent of infection-induced lung injury are unknown issues. With the use of irradiation bone marrow chimeras, we found that TFF2 produced from both hematopoietic- and nonhematopoietic-derived cells is essential for host protection, proliferation of alveolar type 2 cells, and restoration of pulmonary gas exchange after infection with the hookworm parasite Nippostrongylus brasiliensis. In the absence of TFF2, lung epithelia were unable to proliferate and expressed reduced lung mRNA transcript levels for type 2 response-inducing IL-25 and IL-33 after infectious injury. Strikingly, even in the absence of infection or irradiation, TFF2 deficiency compromised lung structure and function, as characterized by distended alveoli and reduced blood oxygen levels relative to wild-type control mice. Taken together, we show a previously unappreciated role for TFF2, produced by either hematopoietic or nonhematopoietic sources, as a pro-proliferative factor for lung epithelial cells under steady-state and infectious injury conditions.


Subject(s)
Epithelial Cells/metabolism , Lung/metabolism , Pulmonary Alveoli/metabolism , Strongylida Infections/metabolism , Trefoil Factor-2/metabolism , Animals , Cell Proliferation , Epithelial Cells/parasitology , Epithelial Cells/pathology , Lung/parasitology , Lung/pathology , Mice , Mice, Transgenic , Nippostrongylus , Pulmonary Alveoli/parasitology , Pulmonary Alveoli/pathology , Strongylida Infections/immunology , Strongylida Infections/pathology
17.
J Immunol ; 196(11): 4632-40, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27183598

ABSTRACT

How the metabolic demand of parasitism affects immune-mediated resistance is poorly understood. Immunity against parasitic helminths requires M2 cells and IL-13, secreted by CD4(+) Th2 and group 2 innate lymphoid cells (ILC2), but whether certain metabolic enzymes control disease outcome has not been addressed. This study demonstrates that AMP-activated protein kinase (AMPK), a key driver of cellular energy, regulates type 2 immunity and restricts lung injury following hookworm infection. Mice with a selective deficiency in the AMPK catalytic α1 subunit in alveolar macrophages and conventional dendritic cells produced less IL-13 and CCL17 and had impaired expansion of ILC2 in damaged lung tissue compared with wild-type controls. Defective type 2 responses were marked by increased intestinal worm burdens, exacerbated lung injury, and increased production of IL-12/23p40, which, when neutralized, restored IL-13 production and improved lung recovery. Taken together, these data indicate that defective AMPK activity in myeloid cells negatively impacts type 2 responses through increased IL-12/23p40 production. These data support an emerging concept that myeloid cells and ILC2 can coordinately regulate tissue damage at mucosal sites through mechanisms dependent on metabolic enzyme function.


Subject(s)
AMP-Activated Protein Kinases/immunology , Hookworm Infections/immunology , Immunity, Innate/immunology , Interleukin-12/immunology , Interleukin-23/immunology , Lung Injury/immunology , Myeloid Cells/immunology , AMP-Activated Protein Kinases/metabolism , Animals , Hookworm Infections/metabolism , Lung Injury/metabolism , Mice , Mice, Inbred C57BL , Myeloid Cells/metabolism
18.
Am J Respir Cell Mol Biol ; 53(5): 689-702, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25874372

ABSTRACT

Statins are widely used to prevent cardiovascular disease. In addition to their inhibitory effects on cholesterol synthesis, statins have beneficial effects in patients with sepsis and pneumonia, although molecular mechanisms have mostly remained unclear. Using human airway epithelial cells as a proper in vitro model, we show that prior exposure to physiological nanomolar serum concentrations of simvastatin (ranging from 10-1,000 nM) confers significant cellular resistance to the cytotoxicity of pneumolysin, a pore-forming toxin and the main virulence factor of Streptococcus pneumoniae. This protection could be demonstrated with a different statin, pravastatin, or on a different toxin, α-hemolysin. Furthermore, through the use of gene silencing, pharmacological inhibitors, immunofluorescence microscopy, and biochemical and metabolic rescue approaches, we demonstrate that the mechanism of protection conferred by simvastatin at physiological nanomolar concentrations could be different from the canonical mevalonate pathways seen in most other mechanistic studies conducted with statins at micromolar levels. All of these data are integrated into a protein synthesis-dependent, calcium-dependent model showing the interconnected pathways used by statins in airway epithelial cells to elicit an increased resistance to pore-forming toxins. This research fills large gaps in our understanding of how statins may confer host cellular protection against bacterial infections in the context of airway epithelial cells without the confounding effect from the presence of immune cells. In addition, our discovery could be potentially developed into a host-centric strategy for the adjuvant treatment of pore-forming toxin associated bacterial infections.


Subject(s)
Bacterial Toxins/antagonists & inhibitors , Epithelial Cells/drug effects , Hemolysin Proteins/antagonists & inhibitors , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Immunity, Innate/drug effects , Simvastatin/pharmacology , Streptolysins/antagonists & inhibitors , Animals , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/toxicity , Bacterial Toxins/toxicity , Cell Line, Transformed , Epithelial Cells/immunology , Epithelial Cells/pathology , Hemolysin Proteins/toxicity , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/immunology , Injections, Intraperitoneal , Lung/drug effects , Lung/immunology , Lung/pathology , Mice , Mice, Inbred C57BL , Pravastatin/immunology , Pravastatin/pharmacology , Primary Cell Culture , Respiratory Mucosa/drug effects , Respiratory Mucosa/immunology , Respiratory Mucosa/pathology , Simvastatin/immunology , Staphylococcus aureus/chemistry , Streptococcus pneumoniae/chemistry , Streptolysins/toxicity
19.
PLoS One ; 9(7): e100978, 2014.
Article in English | MEDLINE | ID: mdl-25033426

ABSTRACT

Airway epithelial cells are the first line of defense against viral infections and are instrumental in coordinating the inflammatory response. In this study, we demonstrate the synergistic stimulation of CXCL10 mRNA and protein, a key chemokine responsible for the early immune response to viral infection, following treatment of airway epithelial cells with IFN γ and influenza virus. The synergism also occurred when the cells were treated with IFN γ and a viral replication mimicker (dsRNA) both in vitro and in vivo. Despite the requirement of type I interferon (IFNAR) signaling in dsRNA-induced CXCL10, the synergism was independent of the IFNAR pathway since it wasn't affected by the addition of a neutralizing IFNAR antibody or the complete lack of IFNAR expression. Furthermore, the same synergistic effect was also observed when a CXCL10 promoter reporter was examined. Although the responsive promoter region contains both ISRE and NFκB sites, western blot analysis indicated that the combined treatment of IFN γ and dsRNA significantly augmented NFκB but not STAT1 activation as compared to the single treatment. Therefore, we conclude that IFN γ and dsRNA act in concert to potentiate CXCL10 expression in airway epithelial cells via an NFκB-dependent but IFNAR-STAT independent pathway and it is at least partly regulated at the transcriptional level.


Subject(s)
Chemokine CXCL10/immunology , Influenza A virus/immunology , Influenza, Human/immunology , Interferon-gamma/immunology , Respiratory Mucosa/immunology , Animals , Cells, Cultured , Chemokine CXCL10/biosynthesis , Chemokine CXCL10/genetics , Enzyme Activation , Epithelial Cells/cytology , Epithelial Cells/immunology , Epithelial Cells/virology , Humans , Influenza, Human/virology , Interferon Type I/immunology , Mice , Mice, Inbred BALB C , NF-kappa B/metabolism , Promoter Regions, Genetic/genetics , RNA, Double-Stranded/immunology , RNA, Messenger/biosynthesis , Respiratory Mucosa/cytology , Respiratory Mucosa/virology , STAT1 Transcription Factor/metabolism , Signal Transduction/immunology , Up-Regulation
20.
Clin Dev Immunol ; 2013: 267971, 2013.
Article in English | MEDLINE | ID: mdl-23956759

ABSTRACT

The significance of Th17 cells and interleukin- (IL-)17A signaling in host defense and disease development has been demonstrated in various infection and autoimmune models. Numerous studies have indicated that Th17 cells and its signature cytokine IL-17A are critical to the airway's immune response against various bacteria and fungal infection. Cytokines such as IL-23, which are involved in Th17 differentiation, play a critical role in controlling Klebsiella pneumonia (K. pneumonia) infection. IL-17A acts on nonimmune cells in infected tissues to strengthen innate immunity by inducing the expression of antimicrobial proteins, cytokines, and chemokines. Mice deficient in IL-17 receptor (IL-17R) expression are susceptible to infection by various pathogens. In this review, we summarize the recent advances in unraveling the mechanism behind Th17 cell differentiation, IL-17A/IL-17R signaling, and also the importance of IL-17A in pulmonary infection.


Subject(s)
Interleukin-17/metabolism , Pneumonia/immunology , Pneumonia/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Animals , Cell Differentiation , Gene Expression Regulation , Humans , Immunity, Innate , Pneumonia/genetics , Pneumonia/microbiology , Receptors, Interleukin-17/metabolism , Respiratory Mucosa/immunology , Respiratory Mucosa/metabolism , Signal Transduction , Th17 Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL