Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
J Clin Invest ; 128(10): 4485-4500, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30024858

ABSTRACT

Oxidative stress is an underlying component of acute and chronic kidney disease. Apoptosis signal-regulating kinase 1 (ASK1) is a widely expressed redox-sensitive serine threonine kinase that activates p38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase kinases, and induces apoptotic, inflammatory, and fibrotic signaling in settings of oxidative stress. We describe the discovery and characterization of a potent and selective small-molecule inhibitor of ASK1, GS-444217, and demonstrate the therapeutic potential of ASK1 inhibition to reduce kidney injury and fibrosis. Activation of the ASK1 pathway in glomerular and tubular compartments was confirmed in renal biopsies from patients with diabetic kidney disease (DKD) and was decreased by GS-444217 in several rodent models of kidney injury and fibrosis that collectively represented the hallmarks of DKD pathology. Treatment with GS-444217 reduced progressive inflammation and fibrosis in the kidney and halted glomerular filtration rate decline. Combination of GS-444217 with enalapril, an angiotensin-converting enzyme inhibitor, led to a greater reduction in proteinuria and regression of glomerulosclerosis. These results identify ASK1 as an important target for renal disease and support the clinical development of an ASK1 inhibitor for the treatment of DKD.


Subject(s)
Diabetic Nephropathies/enzymology , Fibroblasts/enzymology , Kidney Glomerulus/enzymology , MAP Kinase Kinase Kinase 5/metabolism , MAP Kinase Signaling System , Animals , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/genetics , Diabetic Nephropathies/pathology , Disease Models, Animal , Female , Fibroblasts/pathology , Fibrosis , Humans , Kidney Glomerulus/pathology , MAP Kinase Kinase Kinase 5/antagonists & inhibitors , MAP Kinase Kinase Kinase 5/genetics , Male , Mice , Mice, Knockout , Protein Kinase Inhibitors/pharmacology , Random Allocation , Rats, Sprague-Dawley
2.
Hepatology ; 61(3): 942-52, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25311838

ABSTRACT

UNLABELLED: Primary liver cancer encompasses both hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). The Notch signaling pathway, known to be important for the proper development of liver architecture, is also a potential driver of primary liver cancer. However, with four known Notch receptors and several Notch ligands, it is not clear which Notch pathway members play the predominant role in liver cancer. To address this question, we utilized antibodies to specifically target Notch1, Notch2, Notch3, or jagged1 (Jag1) in a mouse model of primary liver cancer driven by v-akt murine thymoma viral oncogene homolog and neuroblastoma RAS viral oncogene homolog (NRas). We show that inhibition of Notch2 reduces tumor burden by eliminating highly malignant HCC- and CCA-like tumors. Inhibition of the Notch ligand, Jag1, had a similar effect, consistent with Jag1 acting in cooperation with Notch2. This effect was specific to Notch2, because Notch3 inhibition did not decrease tumor burden. Unexpectedly, Notch1 inhibition altered the relative proportion of tumor types, reducing HCC-like tumors but dramatically increasing CC-like tumors. Finally, we show that Notch2 and Jag1 are expressed in, and Notch2 signaling is activated in, a subset of human HCC samples. CONCLUSIONS: These findings underscore the distinct roles of different Notch receptors in the liver and suggest that inhibition of Notch2 signaling represents a novel therapeutic option in the treatment of liver cancer.


Subject(s)
Liver Neoplasms/drug therapy , Receptors, Notch/antagonists & inhibitors , Animals , Calcium-Binding Proteins/analysis , Calcium-Binding Proteins/antagonists & inhibitors , Disease Models, Animal , Forkhead Box Protein M1 , Forkhead Transcription Factors/analysis , Humans , Intercellular Signaling Peptides and Proteins/analysis , Jagged-1 Protein , Membrane Proteins/analysis , Membrane Proteins/antagonists & inhibitors , Mice , Proto-Oncogene Proteins c-akt/physiology , Proto-Oncogene Proteins p21(ras)/physiology , Receptors, Notch/analysis , Receptors, Notch/physiology , Serrate-Jagged Proteins
3.
Cell ; 145(4): 513-28, 2011 May 13.
Article in English | MEDLINE | ID: mdl-21565611

ABSTRACT

Nephronophthisis (NPHP), Joubert (JBTS), and Meckel-Gruber (MKS) syndromes are autosomal-recessive ciliopathies presenting with cystic kidneys, retinal degeneration, and cerebellar/neural tube malformation. Whether defects in kidney, retinal, or neural disease primarily involve ciliary, Hedgehog, or cell polarity pathways remains unclear. Using high-confidence proteomics, we identified 850 interactors copurifying with nine NPHP/JBTS/MKS proteins and discovered three connected modules: "NPHP1-4-8" functioning at the apical surface, "NPHP5-6" at centrosomes, and "MKS" linked to Hedgehog signaling. Assays for ciliogenesis and epithelial morphogenesis in 3D renal cultures link renal cystic disease to apical organization defects, whereas ciliary and Hedgehog pathway defects lead to retinal or neural deficits. Using 38 interactors as candidates, linkage and sequencing analysis of 250 patients identified ATXN10 and TCTN2 as new NPHP-JBTS genes, and our Tctn2 mouse knockout shows neural tube and Hedgehog signaling defects. Our study further illustrates the power of linking proteomic networks and human genetics to uncover critical disease pathways.


Subject(s)
Kidney Diseases, Cystic/genetics , Membrane Proteins/genetics , Signal Transduction , Animals , Ataxin-10 , Centrosome/metabolism , Cilia/metabolism , Ciliary Motility Disorders/genetics , Encephalocele/genetics , Hedgehog Proteins/metabolism , Humans , Kidney Diseases, Cystic/metabolism , Mice , NIH 3T3 Cells , Nerve Tissue Proteins/genetics , Polycystic Kidney Diseases/genetics , Retinitis Pigmentosa , Zebrafish
4.
J Invest Dermatol ; 128(5): 1081-7, 2008 May.
Article in English | MEDLINE | ID: mdl-18408747

ABSTRACT

Hair follicle development and maintenance require precise reciprocal signaling interactions between the epithelium and underlying dermis. Three major developmental signaling pathways, Wnt, Sonic hedgehog, and NF-kappaB/Edar, are indispensable for this process and, when aberrantly activated, can lead to skin and appendage neoplasms. Recent data point to protein polyubiquitination as playing a central role in regulating the timing, duration, and location of signaling. Here we review how polyubiquitination regulates the stability and interaction of key signaling components that control hair follicle development and regeneration.


Subject(s)
Hair Follicle/metabolism , Hair Follicle/physiology , Regeneration/physiology , Signal Transduction/physiology , Ubiquitin/metabolism , Animals , Hair Follicle/cytology , Humans
5.
Genes Dev ; 20(3): 276-81, 2006 Feb 01.
Article in English | MEDLINE | ID: mdl-16421275

ABSTRACT

Regulated protein destruction controls many key cellular processes with aberrant regulation increasingly found during carcinogenesis. Gli proteins mediate the transcriptional effects of the Sonic hedgehog pathway, which is implicated in up to 25% of human tumors. Here we show that Gli is rapidly destroyed by the proteasome and that mouse basal cell carcinoma induction correlates with Gli protein accumulation. We identify two independent destruction signals in Gli1, D(N) and D(C), and show that removal of these signals stabilizes Gli1 protein and rapidly accelerates tumor formation in transgenic animals. These data argue that control of Gli protein accumulation underlies tumorigenesis and suggest a new avenue for antitumor therapy.


Subject(s)
Carcinoma, Basal Cell/metabolism , Oncogene Proteins/metabolism , Signal Transduction/genetics , Transcription Factors/metabolism , Amino Acid Sequence , Animals , Carcinoma, Basal Cell/etiology , Cytoplasm/metabolism , Gene Expression Regulation , Humans , Keratinocytes/cytology , Keratinocytes/metabolism , Mice , Mice, Transgenic , Molecular Sequence Data , Mutation , NIH 3T3 Cells , Oncogene Proteins/genetics , Proteasome Endopeptidase Complex/metabolism , Signal Transduction/physiology , Trans-Activators , Transcription Factors/genetics , Transfection , Xenopus , Zinc Finger Protein GLI1
SELECTION OF CITATIONS
SEARCH DETAIL