Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 50(19): 11058-11071, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36263813

ABSTRACT

DNA double strand breaks (DSBs) are induced by external genotoxic agents (ionizing radiation or genotoxins) or by internal processes (recombination intermediates in lymphocytes or by replication errors). The DNA ends induced by these genotoxic processes are often not ligatable, requiring potentially mutagenic end-processing to render ends compatible for ligation by non-homologous end-joining (NHEJ). Using single molecule approaches, Loparo et al. propose that NHEJ fidelity can be maintained by restricting end-processing to a ligation competent short-range NHEJ complex that 'maximizes the fidelity of DNA repair'. These in vitro studies show that although this short-range NHEJ complex requires DNA ligase IV (Lig4), its catalytic activity is dispensable. Here using cellular models, we show that inactive Lig4 robustly promotes DNA repair in living cells. Compared to repair products from wild-type cells, those isolated from cells with inactive Lig4 show a somewhat increased fraction that utilize micro-homology (MH) at the joining site consistent with alternative end-joining (a-EJ). But unlike a-EJ in the absence of NHEJ, a large percentage of joints isolated from cells with inactive Lig4 occur with no MH - thus, clearly distinct from a-EJ. Finally, biochemical assays demonstrate that the inactive Lig4 complex promotes the activity of DNA ligase III (Lig3).


Subject(s)
DNA End-Joining Repair , DNA Repair , DNA/genetics , DNA Breaks, Double-Stranded , DNA Ligase ATP/genetics , DNA Ligases/genetics , DNA Ligases/metabolism , Biocatalysis
3.
Int J Hematol ; 102(4): 441-50, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26261072

ABSTRACT

The transcription factor PU.1 and its inhibitory microRNA-155 (miR-155) are important regulators of B-cell differentiation. PU.1 downregulation coupled with oncogenic miR-155 upregulation has been reported in lymphoid malignancies; however, these data have not been studied across different subtypes in relation to clinical outcomes. We studied expression of miR-155 and PU.1 in the six most prevalent human B-cell lymphomas (n = 131) including aggressive (DLBCL, HL, MCL) and indolent (B-CLL/SLL, MZL, FL) types. Levels of miR-155 and PU.1 inversely correlated in DLBCL, B-CLL/SLL, and FL tumor tissues. In HL tissues, an exceptionally high level of miR-155 was found in patients with unfavorable responses to first-line therapy and those who had shorter survival times. PU.1 downregulation was noted in B-CLL/SLL samples positive for the adverse prognostic markers CD38 and ZAP-70. Upregulation of miR-155 and downregulation of PU.1 expression are integral aspects of lymphoma biology that could mark aggressive behavior of some, but not all, lymphoma types.


Subject(s)
Biomarkers, Tumor/biosynthesis , Gene Expression Regulation, Neoplastic , Lymphoma/metabolism , Lymphoma/mortality , MicroRNAs/biosynthesis , Proto-Oncogene Proteins/biosynthesis , RNA, Neoplasm/biosynthesis , Trans-Activators/biosynthesis , ADP-ribosyl Cyclase 1/metabolism , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Prevalence , ZAP-70 Protein-Tyrosine Kinase/metabolism
4.
Sci Rep ; 4: 4482, 2014 Mar 27.
Article in English | MEDLINE | ID: mdl-24670820

ABSTRACT

Experimental models that recapitulate mutational landscapes of human cancers are needed to decipher the rapidly expanding data on human somatic mutations. We demonstrate that mutation patterns in immortalised cell lines derived from primary murine embryonic fibroblasts (MEFs) exposed in vitro to carcinogens recapitulate key features of mutational signatures observed in human cancers. In experiments with several cancer-causing agents we obtained high genome-wide concordance between human tumour mutation data and in vitro data with respect to predominant substitution types, strand bias and sequence context. Moreover, we found signature mutations in well-studied human cancer driver genes. To explore endogenous mutagenesis, we used MEFs ectopically expressing activation-induced cytidine deaminase (AID) and observed an excess of AID signature mutations in immortalised cell lines compared to their non-transgenic counterparts. MEF immortalisation is thus a simple and powerful strategy for modelling cancer mutation landscapes that facilitates the interpretation of human tumour genome-wide sequencing data.


Subject(s)
Mutation , Neoplasms/genetics , Animals , Cell Line, Transformed , Computational Biology , DNA Mutational Analysis/methods , Exome , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing , Humans , In Vitro Techniques , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...