Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Sci (Lond) ; 138(12): 711-723, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38804865

ABSTRACT

Myopenia is a condition marked by progressive decline of muscle mass and strength and is associated with aging or obesity. It poses the risk of falling, with potential bone fractures, thereby also increasing the burden on family and society. Skeletal muscle wasting is characterized by a reduced number of myoblasts, impaired muscle regeneration and increased muscle atrophy markers (Atrogin-1, MuRF-1). Endothelin-1 (ET-1) is a potent vasoconstrictor peptide. Increased circulating levels of ET-1 is noted with aging and is associated with muscular fibrosis and decline of strength. However, the regulatory mechanism controlling its effect on myogenesis and atrophy remains unknown. In the present study, the effects of ET-1 on myoblast proliferation, differentiation and development were investigated in C2C12 cells and in ET-1-infused mice. The results show that ET-1, acting via ETB receptors, reduced insulin-stimulated cell proliferation, and also reduced MyoD, MyoG and MyHC expression in the differentiation processes of C2C12 myoblasts. ET-1 inhibited myoblast differentiation through ETB receptors and the p38 mitogen-activated protein kinase (MAPK)-dependent pathway. Additionally, ET-1 decreased MyHC expression in differentiated myotubes. Inhibition of proteasome activity by MG132 ameliorated the ET-1-stimulated protein degradation in differentiated C2C12 myotubes. Furthermore, chronic ET-1 infusion caused skeletal muscle atrophy and impaired exercise performance in mice. In conclusion, ET-1 inhibits insulin-induced cell proliferation, impairs myogenesis and induces muscle atrophy via ETB receptors and the p38 MAPK-dependent pathway.


Subject(s)
Cell Differentiation , Cell Proliferation , Endothelin-1 , Muscle Development , Muscle, Skeletal , p38 Mitogen-Activated Protein Kinases , Animals , Muscle Development/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism , Endothelin-1/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/drug effects , Cell Proliferation/drug effects , Cell Line , Mice , Male , Mice, Inbred C57BL , Myoblasts/metabolism , Myoblasts/drug effects , Signal Transduction , MAP Kinase Signaling System , Muscular Atrophy/metabolism , Muscular Atrophy/pathology
2.
Int Immunopharmacol ; 66: 267-273, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30502647

ABSTRACT

Berberine is an isoquinoline alkaloid isolated from herb plants, such as Cortex phellodendri (Huangbai) and Rhizoma coptidis (Huanglian). Huanglian and Huangbai have been used as "heat-removing" agents. In addition, berberine has been reported to exert anti-inflammatory effect both in vivo and in vitro, where mitogen-activated protein kinase (MAPK) and cyclooxygenase-2 (COX-2) expressions are critically implicated. We herein tested the hypothesis that berberine exerts an anti-inflammatory effect through MAPK and COX-2 signaling pathway in T-cell acute lymphoblastic leukemia (T-ALL). In Jurkat cells, we found that PHA exposure caused elevation on interleukin-2 (IL-2) production in a time-dependent manner. PHA-stimulated reactions were steeply suppressed by berberine, such as IL-2 mRNA expression and protein secretion. However, berberine did not exert any cytotoxic effect at doses of 40 µg/ml. In addition, the possible molecular mechanism of anti-inflammation effect of berberine could be the inhibition of PHA-evoked phosphorylation of p38, since c-Jun N-terminal kinases (JNK) and extracellular signal-regulated kinase (ERK) expressions did not alter. Consistent with above results, berberine inhibition on PHA-induced IL-2 secretion could be reversed by treatment of SB203580, a specific inhibitor of p38-MAPK. Interestingly, upregulation of PHA-induced COX-2 expression was also observed following berberine treatment of Jurkat cells. Furthermore, flow cytometry analysis showed berberine-induced cell cycle arrest at G1 phase after PHA stimulation and decreased percentage of G2/M phase. In conclusion, our study demonstrated that the anti-inflammatory effect of berberine largely potentially results from its ability to attenuate p38 MAPK expression, and does not exclude a positive action of berberine on cell cycle arrest. These results provide an innovative medicine strategy to against or treat T-ALL patients.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Berberine/pharmacology , Interleukin-2/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , T-Lymphocytes/drug effects , Cyclooxygenase 2/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Jurkat Cells , Medicine, Chinese Traditional , Phosphorylation , Phytohemagglutinins/immunology , Signal Transduction , T-Lymphocytes/immunology , Up-Regulation , p38 Mitogen-Activated Protein Kinases/metabolism
3.
Inflammation ; 41(6): 2265-2274, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30136021

ABSTRACT

Gossypol, a natural polyphenolic compound extracted from cottonseed oil, has been reported to possess pharmacological properties via modulation cell cycle and immune signaling pathway. However, whether gossypol has anti-inflammatory effects against phytohemagglutinin (PHA)-induced cytokine secretion in T lymphocytes through similar mechanism remains unclear. Using the T lymphocytes Jurkat cell line, we found that PHA exposure caused dramatic increase in interleukin-2 (IL-2) mRNA expression as well as IL-2 secretion. All of these PHA-stimulated reactions were attenuated in a dose-dependent manner by being pretreated with gossypol. However, gossypol did not show any in vitro cytotoxic effect at doses of 5-20 µM. As a possible mechanism underlying gossypol action, such as pronounced suppression IL-2 release, robust decreased PHA-induced phosphorylation of p38 and c-Jun N-terminal kinase expressions was found with gossypol pretreatment, but not significant phosphorylation of extracellular signal-regulated kinase expression. Furthermore, gossypol could suppress the Jurkat cells' growth, which was associated with increased percentage of G1/S phase and decreased fraction of G2 phase in flow cytometry test. We conclude that gossypol exerts anti-inflammatory effects probably through partial attenuation of mitogen-activated protein kinase (phosphorylated JNK and p38) signaling and cell cycle arrest in Jurkat cells.


Subject(s)
Cell Cycle/drug effects , Gossypol/pharmacology , Lymphocytes/drug effects , MAP Kinase Signaling System/drug effects , Anti-Inflammatory Agents/pharmacology , Cytokines/drug effects , Cytokines/metabolism , Gossypol/therapeutic use , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Jurkat Cells , Lymphocytes/metabolism , Phosphorylation , Phytohemagglutinins/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism
4.
Sci Rep ; 7(1): 9035, 2017 08 22.
Article in English | MEDLINE | ID: mdl-28831034

ABSTRACT

Hypoxia or intermittent hypoxia (IH) have known to alter both synthesis and secretion of hormones. However, the effect of IH on the production of adrenal cortical steroid hormones is still unclear. The aim of present study was to explore the mechanism involved in the effect of IH on the production of corticosterone by rat ZFR cells. Male rats were exposed at 12% O2 and 88% N2 (8 hours per day) for 1, 2, or 4 days. The ZFR cells were incubated at 37 °C for 1 hour with or without ACTH, 8-Br-cAMP, calcium ion channel blockers, or steroidogenic precursors. The concentration of plasma corticosterone was increased time-dependently by administration of IH hypoxia. The basal levels of corticosterone production in cells were higher in the IH groups than in normoxic group. IH resulted in a time-dependent increase of corticosterone production in response to ACTH, 8-Br-cAMP, progesterone and deoxycorticosterone. The production of pregnenolone in response to 25-OH-C and that of progesterone in response to pregnenolone in ZFR cells were enhanced by 4-day IH. These results suggest that IH in rats increases the secretion of corticosterone via a mechanism at least in part associated with the activation of cAMP pathway and steroidogenic enzymes.


Subject(s)
Corticosterone/biosynthesis , Hypoxia/metabolism , Zona Fasciculata/cytology , Zona Fasciculata/metabolism , 11-beta-Hydroxysteroid Dehydrogenases/metabolism , 8-Bromo Cyclic Adenosine Monophosphate/metabolism , Adrenocorticotropic Hormone/metabolism , Adrenocorticotropic Hormone/pharmacology , Animals , Biomarkers , Calcium Channels/metabolism , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Corticosterone/blood , Male , Pregnenolone/metabolism , Rats , Zona Fasciculata/drug effects
5.
Steroids ; 111: 134-138, 2016 07.
Article in English | MEDLINE | ID: mdl-27016129

ABSTRACT

Betel nut is the second largest economic food product in Taiwan. In Southeast Asia, the habit of chewing betel nut seems to be highly correlated with oral submucous fibrosis and oral squamous cell carcinoma. Oral submucous fibrosis is characterized by abnormal accumulation of oral submucous collagen fibers and limitation of mouth opening. Although the mechanism responsible for tissue damage is still unknown, prolonged irritation caused by betel nut and tobacco is considered to be a major factor contributing to the pathogenesis of oral submucous fibrosis. The effect of betel nut chewing on immune system remains unknown. Present study aims to investigate the change of plasma hormones including cortisol, testosterone, and inflammatory cytokine concentrations in male chewing betel nut compared with normal subjects. Heparinized blood was obtained from control group (normal young+mid-aged individuals), betel nut-chewing, and oral cancer male subjects. The study was approved by the Ethics Committee of the Chang-Gung Memorial Hospital. Written informed consent was granted by the patients. Plasma cortisol and testosterone concentrations were detected by commercial enzyme-linked immunosorbent assay (ELISA). The inflammatory cytokines, including interleukin-1ß (IL-1ß), IL-15, tumor necrosis factor-α (TNF-α), were analyzed by ELISA with commercial monoclonal capture antibodies and polyclonal detection antibodies. The median concentrations of plasma IL-1ß, IL-15, and TNF-α were 3.14pg/ml, 3.14pg/ml, and 6.85pg/ml, respectively, in patients with oral cancer, compared with median plasma IL-1ß, IL-15, and TNF-α concentration of 2.64pg/ml, 5.86pg/ml, and 5.38pg/ml, respectively, in patients with betel nut-chewing habit. In contrast, the median concentrations of plasma IL-1ß, IL-15, and TNF-α in mid-aged males (aged 30-50) were 7.00pg/ml, 10.64pg/ml, and 31.73pg/ml, respectively, compared with median plasma concentration of IL-1ß, IL-15, and TNF-α of 4.48pg/ml, 33.36pg/ml, and 97.77pg/ml in young males (aged 20-22), respectively. Also, significantly elevated plasma cortisol concentration was noted in betel nut-chewing (median 727.2ng/ml) and oral cancer patients (561.9ng/ml) compared to the mid-aged (176.8ng/ml) and young males (173.4ng/ml), respectively. In addition, lower plasma testosterone concentrations were found in betel nut-chewing subjects compared with young males (2.6±3.3ng/ml vs 6.2±2.9ng/ml). To summarize, the inflammatory cytokines and steroid hormones may reflect the degree of inflammation in betel nut-chewing males and the oral cancer subjects. The above findings suggest that betel nut-chewing or oral cancer inhibits plasma cytokines and regulates steroid hormones concentrations compared to mid-aged or young normal subjects. It is also indicated that betel nut-chewing causes decreased inflammatory cytokines as the same levels as in oral cancer subjects.


Subject(s)
Areca/adverse effects , Cytokines/blood , Hydrocortisone/blood , Adult , Enzyme-Linked Immunosorbent Assay , Humans , Interleukin-15/blood , Interleukin-1beta/blood , Male , Middle Aged , Mouth Neoplasms/blood , Taiwan , Testosterone/blood , Tumor Necrosis Factor-alpha/blood , Young Adult
6.
Toxicology ; 268(1-2): 1-7, 2010 Jan 31.
Article in English | MEDLINE | ID: mdl-19883722

ABSTRACT

Nonylphenol (NP), a final metabolite of nonylphenol polyethoxylate, has been reported to interfere with male reproduction. However, its mechanisms are not fully understood. In the present study, we examined the effects of NP on steroidogenesis of testosterone in rat Leydig cells. The testosterone concentrations in rat plasma were examined after intravenous injection of NP (100 microg/kg) at different time intervals. In addition, rat Leydig cells were challenged with different concentrations of NP (4.25-127.5 microM) to evaluate its influences on testosterone steroidogenesis. Administration of NP showed a decrease of hCG-induced plasma testosterone. Moreover, in vitro experiments revealed that NP (127.5 microM) alone stimulated testosterone release through increase of both protein levels and activities of the StAR and P450(SCC). In contrast, NP inhibited hCG-induced testosterone release in rat Leydig cells. The inhibitory effect was also observed after incubation of the Leydig cells in the presence of different precursors. These results suggested that NP had differential effects on testosterone synthesis.


Subject(s)
Leydig Cells/drug effects , Phenols/pharmacology , Testosterone/metabolism , Animals , Blotting, Western , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Dose-Response Relationship, Drug , Enzyme-Linked Immunosorbent Assay , Male , Phosphoproteins/metabolism , Radioimmunoassay , Rats , Rats, Sprague-Dawley
7.
Am J Physiol Endocrinol Metab ; 297(5): E1039-45, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19690072

ABSTRACT

The aim of this study was to explore the effect and action mechanisms of intermittent hypoxia on the production of testosterone both in vivo and in vitro. Male rats were housed in a hypoxic chamber (12% O(2) + 88% N(2), 1.5 l/ml) 8 h/day for 4 days. Normoxic rats were used as control. In an in vivo experiment, hypoxic and normoxic rats were euthanized and the blood samples collected. In the in vitro experiment, the enzymatically dispersed rat Leydig cells were prepared and challenged with forskolin (an adenylyl cyclase activator, 10(-4) M), 8-Br-cAMP (a membrane-permeable analog of cAMP, 10(-4) M), hCG (0.05 IU), the precursors of the biosynthesis testosterone, including 25-OH-C (10(-5) M), pregnenolone (10(-7) M), progesterone (10(-7) M), 17-OH-progesterone (10(-7) M), and androstendione (10(-7)-10(-5) M), nifedipine (L-type Ca(2+) channel blocker, 10(-6)-10(-4) M), nimodipine (L-type Ca(2+) channel blocker, 10(-5) M), tetrandrine (L-type Ca(2+) channel blocker, 10(-5) M), and NAADP (calcium-signaling messenger causing release of calcium from intracellular stores, 10(-6)-10(-4) M). The concentrations of testosterone in plasma and medium were measured by radioimmunoassay. The level of plasma testosterone in hypoxic rats was higher than that in normoxic rats. Enhanced testosterone production was observed in rat Leydig cells treated with hCG, 8-Br-cAMP, or forskolin in both normoxic and hypoxic conditions. Intermittent hypoxia resulted in a further increase of testosterone production in response to the testosterone precursors. The activity of 17ß-hydroxysteroid dehydrogenase was stimulated by the treatment of intermittent hypoxia in vitro. The intermittent hypoxia-induced higher production of testosterone was accompanied with the influx of calcium via L-type calcium channel and the increase of intracellular calcium via the mechanism of calcium mobilization. These results suggested that the intermittent hypoxia stimulated the secretion of testosterone at least in part via stimulatory actions on the activities of adenylyl cyclase, cAMP, L-type calcium channel, and steroidogenic enzymes.


Subject(s)
Cell Hypoxia/physiology , Leydig Cells/metabolism , Testosterone/metabolism , 17-Hydroxysteroid Dehydrogenases/metabolism , 8-Bromo Cyclic Adenosine Monophosphate/pharmacology , Animals , Calcium Channel Blockers/pharmacology , Calcium Channels, L-Type/metabolism , Cell Separation , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Chorionic Gonadotropin/pharmacology , Colforsin/pharmacology , Cyclic AMP/metabolism , Gonadotropins/metabolism , Male , NADP/analogs & derivatives , NADP/pharmacology , Radioimmunoassay , Rats , Rats, Sprague-Dawley , Testosterone/blood
8.
Am J Physiol Endocrinol Metab ; 295(2): E497-504, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18559981

ABSTRACT

Arecoline is one of the major components of betel nuts, which have been consumed as chewing gum in Southeast Asia. In this study, the effects of arecoline on testosterone (T) secretion were explored. Male rats were injected with human chorionic gonadotropin (hCG, 5 IU/kg) or arecoline (1 microg/kg) plus hCG via a jugular catheter. Blood samples were collected at several time intervals subsequent to the challenge. Rat anterior pituitary was treated with gonadotropin-releasing hormone in vitro with or without arecoline, and then the concentrations of luteinizing hormone (LH) in the medium were measured. Rat Leydig cells were purified by Percoll density gradient centrifugation and incubated with arecoline, hCG, forskolin, 8-bromo-cAMP (8-Br-cAMP), nifedipine, nimodipine, or tetrandrine at 34 degrees C for 1 h. A single intravenous injection of arecoline resulted in an increase of the hCG-induced level of plasma T. Administration of arecoline (10(-8) to 10(-6) M) in vitro increased T production in Leydig cells. The stimulatory effect of arecoline on T release in vitro was enhanced by hCG (0.001 IU/ml), forskolin (10(-6) M), or 8-Br-cAMP (10(-5) M). By contrast, nifedipine, nimodipine, or tetrandrine inhibited the increased T concentrations induced by arecoline. Western blot showed that arecoline increases steroidogenic acute regulatory (StAR) protein expression compared with vehicle. These results suggested that arecoline stimulates testosterone production by acting directly on Leydig cells via mechanisms involving an activation of L-type calcium channels, increasing the activity of 17beta-hydroxysteroid dehydrogenase and enhancing the expression of StAR.


Subject(s)
Arecoline/pharmacology , Cholinergic Agonists/pharmacology , Leydig Cells/drug effects , Leydig Cells/metabolism , Testosterone/blood , 8-Bromo Cyclic Adenosine Monophosphate/pharmacology , Animals , Benzylisoquinolines/pharmacology , Blotting, Western , Calcium Channels, L-Type/metabolism , Chorionic Gonadotropin/pharmacology , Colforsin/pharmacology , Luteinizing Hormone/metabolism , Male , Nifedipine/pharmacology , Nimodipine/pharmacology , Phosphoproteins/biosynthesis , Pituitary Gland, Anterior/drug effects , Pituitary Gland, Anterior/metabolism , Rats , Rats, Sprague-Dawley
9.
Am J Physiol Endocrinol Metab ; 292(6): E1763-9, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17374694

ABSTRACT

Hypoxia has been shown to stimulate the expression of vascular endothelial growth factor (VEGF), which is a major mediator for angiogenesis and vasculogenesis. During hypoxia, VEGF promotes angiogenesis in the testis. However, the effect of VEGF on the steroidogenesis of testosterone and the cell proliferation in Leydig cells is unclear. To assess the effects and the action mechanisms of hypoxia, a mouse TM3 Leydig cell line was employed in the present study. The Leydig cells were incubated in an incubator chamber (95% N2-5% CO2) for 1-24 h. The cultured media were collected and assayed by testosterone RIA and VEGF enzyme immunoassay. 3-(4,50-Dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide assay was used to detect the proliferation of Leydig cells. The present results showed that the proliferation of Leydig cells was enhanced significantly by hypoxia. The basal VEGF release was increased, and the response of VEGF production to human chorionic gonadotropin (hCG) was also enhanced in hypoxic condition. During hypoxia, administration of hCG or VEGF stimulated proliferation of Leydig cells, but the stimulatory effect was abolished by the administration of anti-VEGF antibody. Higher doses of VEGF stimulated testosterone release in a dose-dependent manner. Administration of anti-VEGF antibody abolished the stimulatory effect of VEGF on testosterone release. These data suggest that hypoxia stimulates cell proliferation and testosterone release in Leydig cells via an increase of VEGF production.


Subject(s)
Cell Hypoxia/physiology , Leydig Cells/metabolism , Testosterone/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Cell Proliferation/drug effects , Chorionic Gonadotropin/pharmacology , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Immunoenzyme Techniques , Leydig Cells/cytology , Male , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Radioimmunoassay , Vascular Endothelial Growth Factor A/administration & dosage , Vascular Endothelial Growth Factor A/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...