Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 194
Filter
1.
Metabolites ; 14(6)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38921461

ABSTRACT

Biocide resistance poses a significant challenge in industrial processes, with bacteria like Pseudomonas oleovorans exhibiting intrinsic resistance to traditional antimicrobial agents. In this study, the impact of biocide exposure on the metabolome of two P. oleovorans strains, namely, P. oleovorans P4A, isolated from contaminated coating material, and P. oleovorans 1045 reference strain, were investigated. The strains were exposed to 2-Methylisothiazol-3(2H)-one (MI) MIT, 1,2-Benzisothiazol-3(2H)-one (BIT), and 5-chloro-2-methyl-isothiazol-3-one (CMIT) at two different sub-inhibitory concentrations and the lipids and polar and semipolar metabolites were analyzed by ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry UPLC-Q-TOF/MS. Exposure to the BIT biocide induced significant metabolic modifications in P. oleovorans. Notable changes were observed in lipid and metabolite profiles, particularly in phospholipids, amino acid metabolism, and pathways related to stress response and adaptation. The 1045 strain showed more pronounced metabolic alterations than the P4A strain, suggesting potential implications for lipid, amino acid metabolism, energy metabolism, and stress adaptation. Improving our understanding of how different substances interact with bacteria is crucial for making antimicrobial chemicals more effective and addressing the challenges of resistance. We observed that different biocides trigged significantly different metabolic responses in these strains. Our study shows that metabolomics can be used as a tool for the investigation of metabolic mechanisms underlying biocide resistance, and thus in the development of targeted biocides. This in turn can have implications in combating biocide resistance in bacteria such as P. oleovorans.

2.
Nat Commun ; 15(1): 4567, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830848

ABSTRACT

Improved biomarkers are needed for pediatric inflammatory bowel disease. Here we identify a diagnostic lipidomic signature for pediatric inflammatory bowel disease by analyzing blood samples from a discovery cohort of incident treatment-naïve pediatric patients and validating findings in an independent inception cohort. The lipidomic signature comprising of only lactosyl ceramide (d18:1/16:0) and phosphatidylcholine (18:0p/22:6) improves the diagnostic prediction compared with high-sensitivity C-reactive protein. Adding high-sensitivity C-reactive protein to the signature does not improve its performance. In patients providing a stool sample, the diagnostic performance of the lipidomic signature and fecal calprotectin, a marker of gastrointestinal inflammation, does not substantially differ. Upon investigation in a third pediatric cohort, the findings of increased lactosyl ceramide (d18:1/16:0) and decreased phosphatidylcholine (18:0p/22:6) absolute concentrations are confirmed. Translation of the lipidomic signature into a scalable diagnostic blood test for pediatric inflammatory bowel disease has the potential to support clinical decision making.


Subject(s)
Biomarkers , Inflammatory Bowel Diseases , Lipidomics , Humans , Child , Lipidomics/methods , Male , Female , Inflammatory Bowel Diseases/diagnosis , Inflammatory Bowel Diseases/blood , Inflammatory Bowel Diseases/metabolism , Biomarkers/blood , Adolescent , Feces/chemistry , Phosphatidylcholines/blood , C-Reactive Protein/analysis , C-Reactive Protein/metabolism , Child, Preschool , Leukocyte L1 Antigen Complex/blood , Leukocyte L1 Antigen Complex/analysis , Cohort Studies
3.
Environ Int ; 190: 108820, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38906088

ABSTRACT

PFAS are ubiquitous industrial chemicals with known adverse health effects, particularly on the liver. The liver, being a vital metabolic organ, is susceptible to PFAS-induced metabolic dysregulation, leading to conditions such as hepatotoxicity and metabolic disturbances. In this study, we investigated the phenotypic and metabolic responses of PFAS exposure using two hepatocyte models, HepG2 (male cell line) and HepaRG (female cell line), aiming to define phenotypic alterations, and metabolic disturbances at the metabolite and pathway levels. The PFAS mixture composition was selected based on epidemiological data, covering a broad concentration spectrum observed in diverse human populations. Phenotypic profiling by Cell Painting assay disclosed predominant effects of PFAS exposure on mitochondrial structure and function in both cell models as well as effects on F-actin, Golgi apparatus, and plasma membrane-associated measures. We employed comprehensive metabolic characterization using liquid chromatography combined with high-resolution mass spectrometry (LC-HRMS). We observed dose-dependent changes in the metabolic profiles, particularly in lipid, steroid, amino acid and sugar and carbohydrate metabolism in both cells as well as in cell media, with HepaRG cell line showing a stronger metabolic response. In cells, most of the bile acids, acylcarnitines and free fatty acids showed downregulation, while medium-chain fatty acids and carnosine were upregulated, while the cell media showed different response especially in relation to the bile acids in HepaRG cell media. Importantly, we observed also nonmonotonic response for several phenotypic features and metabolites. On the pathway level, PFAS exposure was also associated with pathways indicating oxidative stress and inflammatory responses. Taken together, our findings on PFAS-induced phenotypic and metabolic disruptions in hepatocytes shed light on potential mechanisms contributing to the broader comprehension of PFAS-related health risks.

4.
Anal Chem ; 96(22): 8893-8904, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38782403

ABSTRACT

Metabolites from feces provide important insights into the functionality of the gut microbiome. As immediate freezing is not always feasible in gut microbiome studies, there is a need for sampling protocols that provide the stability of the fecal metabolome and microbiome at room temperature (RT). Here, we investigated the stability of various metabolites and the microbiome (16S rRNA) in feces collected in 95% ethanol (EtOH) and commercially available sample collection kits with specific preservatives OMNImet•GUT/OMNIgene•GUT. To simulate field-collection scenarios, the samples were stored at different temperatures at varying durations (24 h + 4 °C, 24 h RT, 36 h RT, 48 h RT, and 7 days RT) and compared to aliquots immediately frozen at -80 °C. We applied several targeted and untargeted metabolomics platforms to measure lipids, polar metabolites, endocannabinoids, short-chain fatty acids (SCFAs), and bile acids (BAs). We found that SCFAs in the nonstabilized samples increased over time, while a stable profile was recorded in sample aliquots stored in 95% EtOH and OMNImet•GUT. When comparing the metabolite levels between aliquots stored at room temperature and at +4 °C, we detected several changes in microbial metabolites, including multiple BAs and SCFAs. Taken together, we found that storing samples at RT and stabilizing them in 95% EtOH yielded metabolomic results comparable to those from flash freezing. We also found that the overall composition of the microbiome did not vary significantly between different storage types. However, notable differences were observed in the α diversity. Altogether, the stability of the metabolome and microbiome in 95% EtOH provided results similar to those of the validated commercial collection kits OMNImet•GUT and OMNIgene•GUT, respectively.


Subject(s)
Ethanol , Feces , Gastrointestinal Microbiome , Metabolomics , Ethanol/metabolism , Ethanol/analysis , Feces/microbiology , Feces/chemistry , Humans , Specimen Handling/methods , RNA, Ribosomal, 16S , Temperature
5.
Nat Protoc ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769143

ABSTRACT

Untargeted mass spectrometry (MS) experiments produce complex, multidimensional data that are practically impossible to investigate manually. For this reason, computational pipelines are needed to extract relevant information from raw spectral data and convert it into a more comprehensible format. Depending on the sample type and/or goal of the study, a variety of MS platforms can be used for such analysis. MZmine is an open-source software for the processing of raw spectral data generated by different MS platforms. Examples include liquid chromatography-MS, gas chromatography-MS and MS-imaging. These data might typically be associated with various applications including metabolomics and lipidomics. Moreover, the third version of the software, described herein, supports the processing of ion mobility spectrometry (IMS) data. The present protocol provides three distinct procedures to perform feature detection and annotation of untargeted MS data produced by different instrumental setups: liquid chromatography-(IMS-)MS, gas chromatography-MS and (IMS-)MS imaging. For training purposes, example datasets are provided together with configuration batch files (i.e., list of processing steps and parameters) to allow new users to easily replicate the described workflows. Depending on the number of data files and available computing resources, we anticipate this to take between 2 and 24 h for new MZmine users and nonexperts. Within each procedure, we provide a detailed description for all processing parameters together with instructions/recommendations for their optimization. The main generated outputs are represented by aligned feature tables and fragmentation spectra lists that can be used by other third-party tools for further downstream analysis.

6.
Cell ; 187(8): 1853-1873.e15, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38574728

ABSTRACT

This study has followed a birth cohort for over 20 years to find factors associated with neurodevelopmental disorder (ND) diagnosis. Detailed, early-life longitudinal questionnaires captured infection and antibiotic events, stress, prenatal factors, family history, and more. Biomarkers including cord serum metabolome and lipidome, human leukocyte antigen (HLA) genotype, infant microbiota, and stool metabolome were assessed. Among the 16,440 Swedish children followed across time, 1,197 developed an ND. Significant associations emerged for future ND diagnosis in general and for specific ND subtypes, spanning intellectual disability, speech disorder, attention-deficit/hyperactivity disorder, and autism. This investigation revealed microbiome connections to future diagnosis as well as early emerging mood and gastrointestinal problems. The findings suggest links to immunodysregulation and metabolism, compounded by stress, early-life infection, and antibiotics. The convergence of infant biomarkers and risk factors in this prospective, longitudinal study on a large-scale population establishes a foundation for early-life prediction and intervention in neurodevelopment.


Subject(s)
Biomarkers , Gastrointestinal Microbiome , Neurodevelopmental Disorders , Child , Female , Humans , Infant , Pregnancy , Autism Spectrum Disorder/microbiology , Longitudinal Studies , Prospective Studies , Feces/microbiology , Mood Disorders/microbiology
7.
Article in English | MEDLINE | ID: mdl-38678133

ABSTRACT

BACKGROUND: Prenatal exposure to environmental contaminants is a significant health concern because it has the potential to interfere with host metabolism, leading to adverse health effects in early childhood and later in life. Growing evidence suggests that genetic and environmental factors, as well as their interactions, play a significant role in the development of autoimmune diseases. OBJECTIVE: In this study, we hypothesized that prenatal exposure to environmental contaminants impacts cord serum metabolome and contributes to the development of autoimmune diseases. METHODS: We selected cord serum samples from All Babies in Southeast Sweden (ABIS) general population cohort, from infants who later developed one or more autoimmune-mediated and inflammatory diseases: celiac disease (CD), Crohn's disease (IBD), hypothyroidism (HT), juvenile idiopathic arthritis (JIA), and type 1 diabetes (T1D) (all cases, N = 62), along with matched controls (N = 268). Using integrated exposomics and metabolomics mass spectrometry (MS) based platforms, we determined the levels of environmental contaminants and metabolites. RESULTS: Differences in exposure levels were found between the controls and those who later developed various diseases. High contaminant exposure levels were associated with changes in metabolome, including amino acids and free fatty acids. Specifically, we identified marked associations between metabolite profiles and exposure levels of deoxynivalenol (DON), bisphenol S (BPS), and specific per- and polyfluorinated substances (PFAS). IMPACT STATEMENT: Abnormal metabolism is a common feature preceding several autoimmune and inflammatory diseases. However, few studies compared common and specific metabolic patterns preceding these diseases. Here we hypothesized that exposure to environmental contaminants impacts cord serum metabolome, which may contribute to the development of autoimmune diseases. We found differences in exposure levels between the controls and those who later developed various diseases, and importantly, on the metabolic changes associated with the exposures. High contaminant exposure levels were associated with specific changes in metabolome. Our study suggests that prenatal exposure to specific environmental contaminants alters the cord serum metabolomes, which, in turn, might increase the risk of various immune-mediated diseases.

8.
Environ Int ; 186: 108569, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38522229

ABSTRACT

Environmental toxicants (ETs) are associated with adverse health outcomes. Here we hypothesized that exposures to ETs are linked with obesity and insulin resistance partly through a dysbiotic gut microbiota and changes in the serum levels of secondary bile acids (BAs). Serum BAs, per- and polyfluoroalkyl substances (PFAS) and additional twenty-seven ETs were measured by mass spectrometry in 264 Danes (121 men and 143 women, aged 56.6 ± 7.3 years, BMI 29.7 ± 6.0 kg/m2) using a combination of targeted and suspect screening approaches. Bacterial species were identified based on whole-genome shotgun sequencing (WGS) of DNA extracted from stool samples. Personalized genome-scale metabolic models (GEMs) of gut microbial communities were developed to elucidate regulation of BA pathways. Subsequently, we compared findings from the human study with metabolic implications of exposure to perfluorooctanoic acid (PFOA) in PPARα-humanized mice. Serum levels of twelve ETs were associated with obesity and insulin resistance. High chemical exposure was associated with increased abundance of several bacterial species (spp.) of genus (Anaerotruncus, Alistipes, Bacteroides, Bifidobacterium, Clostridium, Dorea, Eubacterium, Escherichia, Prevotella, Ruminococcus, Roseburia, Subdoligranulum, and Veillonella), particularly in men. Conversely, females in the higher exposure group, showed a decrease abundance of Prevotella copri. High concentrations of ETs were correlated with increased levels of secondary BAs including lithocholic acid (LCA), and decreased levels of ursodeoxycholic acid (UDCA). In silico causal inference analyses suggested that microbiome-derived secondary BAs may act as mediators between ETs and obesity or insulin resistance. Furthermore, these findings were substantiated by the outcome of the murine exposure study. Our combined epidemiological and mechanistic studies suggest that multiple ETs may play a role in the etiology of obesity and insulin resistance. These effects may arise from disruptions in the microbial biosynthesis of secondary BAs.


Subject(s)
Dysbiosis , Environmental Exposure , Environmental Pollutants , Gastrointestinal Microbiome , Insulin Resistance , Obesity , Gastrointestinal Microbiome/drug effects , Humans , Obesity/microbiology , Middle Aged , Female , Male , Dysbiosis/chemically induced , Animals , Mice , Bile Acids and Salts/metabolism , Aged
9.
Lancet Planet Health ; 8(1): e5-e17, 2024 01.
Article in English | MEDLINE | ID: mdl-38199723

ABSTRACT

BACKGROUND: Perfluoroalkyl and polyfluoroalkyl substances are classed as endocrine disrupting compounds but continue to be used in many products such as firefighting foams, flame retardants, utensil coatings, and waterproofing of food packaging. Perfluoroalkyl exposure aberrantly modulates lipid, metabolite, and bile acid levels, increasing susceptibility to onset and severity of metabolic diseases, such as diabetes and metabolic dysfunction-associated steatotic liver disease. To date, most studies in humans have focused on perfluoroalkyl-exposure effects in adults. In this study we aimed to show if perfluoroalkyls are present in the human fetal liver and if they have metabolic consequences for the human fetus. METHODS: In this cross-sectional study, human fetal livers from elective termination of pregnancies at the Aberdeen Pregnancy Counselling Service, Aberdeen, UK, were analysed by both targeted (bile acids and perfluoroalkyl substances) and combined targeted and untargeted (lipids and polar metabolites) mass spectrometry based metabolomic analyses, as well as with RNA-Seq. Only fetuses from normally progressing pregnancies (determined at ultrasound scan before termination), terminated for non-medical reasons, from women older than 16 years, fluent in English, and between 11 and 21 weeks of gestation were collected. Women exhibiting considerable emotional distress or whose fetuses had anomalies identified at ultrasound scan were excluded. Stringent bioinformatic and statistical methods such as partial correlation network analysis, linear regression, and pathway analysis were applied to this data to investigate the association of perfluoroalkyl exposure with hepatic metabolic pathways. FINDINGS: Fetuses included in this study were collected between Dec 2, 2004, and Oct 27, 2014. 78 fetuses were included in the study: all 78 fetuses were included in the metabolomics analysis (40 female and 38 male) and 57 fetuses were included in the RNA-Seq analysis (28 female and 29 male). Metabolites associated with perfluoroalkyl were identified in the fetal liver and these varied with gestational age. Conjugated bile acids were markedly positively associated with fetal age. 23 amino acids, fatty acids, and sugar derivatives in fetal livers were inversely associated with perfluoroalkyl exposure, and the bile acid glycolithocholic acid was markedly positively associated with all quantified perfluoroalkyl. Furthermore, 7α-hydroxy-4-cholesten-3-one, a marker of bile acid synthesis rate, was strongly positively associated with perfluoroalkyl levels and was detectable as early as gestational week 12. INTERPRETATION: Our study shows direct evidence for the in utero effects of perfluoroalkyl exposure on specific key hepatic products. Our results provide evidence that perfluoroalkyl exposure, with potential future consequences, manifests in the human fetus as early as the first trimester of gestation. Furthermore, the profiles of metabolic changes resemble those observed in perinatal perfluoroalkyl exposures. Such exposures are already linked with susceptibility, initiation, progression, and exacerbation of a wide range of metabolic diseases. FUNDING: UK Medical Research Council, Horizon Europe Program of the European Union, Seventh Framework Programme of the European Union, NHS Grampian Endowments grants, European Partnership for the Assessment of Risks from Chemicals, Swedish Research Council, Formas, Novo Nordisk Foundation, and the Academy of Finland.


Subject(s)
Fluorocarbons , Metabolic Diseases , Adult , Pregnancy , Humans , Female , Male , Cross-Sectional Studies , Metabolome , Scotland , Bile Acids and Salts , Fluorocarbons/adverse effects
10.
Environ Sci Technol ; 58(5): 2214-2223, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38263945

ABSTRACT

The composition of human breast milk (HBM) exhibits significant variability both between individuals and within the same individual. While environmental factors are believed to play a role in this variation, their influence on breast milk composition remains inadequately understood. Herein, we investigate the impact of environmental factors on HBM lipid composition in a general population cohort. The study included mothers (All Babies In Southeast Sweden study) whose children later progressed to one or more immune-mediated diseases later in life: type 1 diabetes (n = 9), celiac disease (n = 24), juvenile idiopathic arthritis (n = 9), inflammatory bowel disease (n = 7), hypothyroidism (n = 6), and matched controls (n = 173). Lipidome of HBM was characterized by liquid chromatography combined with high-resolution mass spectrometry. We observed that maternal age, body mass index, diet, and exposure to perfluorinated alkyl substances (PFASs) had a marked impact on breast milk lipidome, with larger changes observed in the milk of those mothers whose children later developed autoimmune diseases. We also observed differences in breast milk lipid composition in those mothers whose offspring later developed autoimmune diseases. Our study suggests that breast milk lipid composition is modified by a complex interaction between genetic and environmental factors, and, importantly, this impact was significantly more pronounced in those mothers whose offspring later developed autoimmune/inflammatory diseases. Our findings also suggest that merely assessing PFAS concentration may not capture the full extent of the impact of chemical exposures; thus, the more comprehensive exposome approach is essential for accurately assessing the impact of PFAS exposure on HBM and, consequently, on the health outcomes of the offspring.


Subject(s)
Autoimmune Diseases , Fluorocarbons , Infant , Female , Child , Humans , Milk, Human/chemistry , Lipidomics , Environmental Exposure , Lipids , Fluorocarbons/analysis
11.
Environ Microbiol ; 26(1): e16552, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38098179

ABSTRACT

The deep terrestrial subsurface (DTS) harbours a striking diversity of microorganisms. However, systematic research on microbial metabolism, and how varying groundwater composition affects the bacterial communities and metabolites in these environments is lacking. In this study, DTS groundwater bacterial consortia from two Fennoscandian Shield sites were enriched and studied. We found that the enriched communities from the two sites consisted of distinct bacterial taxa, and alterations in the growth medium composition induced changes in cell counts. The lack of an exogenous organic carbon source (ECS) caused a notable increase in lipid metabolism in one community, while in the other, carbon starvation resulted in low overall metabolism, suggesting a dormant state. ECS supplementation increased CO2 production and SO4 2- utilisation, suggesting activation of a dissimilatory sulphate reduction pathway and sulphate-reducer-dominated total metabolism. However, both communities shared common universal metabolic features, most probably involving pathways needed for the maintenance of cell homeostasis (e.g., mevalonic acid pathway). Collectively, our findings indicate that the most important metabolites related to microbial reactions under varying growth conditions in enriched DTS communities include, but are not limited to, those linked to cell homeostasis, osmoregulation, lipid biosynthesis and degradation, dissimilatory sulphate reduction and isoprenoid production.


Subject(s)
Bacteria , Groundwater , Sulfates/metabolism , Carbon/metabolism , Groundwater/microbiology
12.
Physiol Plant ; 175(6): e14080, 2023.
Article in English | MEDLINE | ID: mdl-38148199

ABSTRACT

The development of light emitting diodes (LED) gives new possibilities to use the light spectrum to manipulate plant morphology and physiology in plant production and research. Here, vegetative Chrysanthemum × morifolium were grown at a photosynthetic photon flux density of 230 µmol m-2 s-1 under monochromatic blue, cyan, green, and red, and polychromatic red:blue or white light with the objective to investigate the effect on plant morphology, gas exchange and metabolic profile. After 33 days of growth, branching and leaf number increased from blue to red light, while area per leaf, leaf weight fraction, flavonol index, and stomatal density and conductance decreased, while dry matter production was mostly unaffected. Plants grown under red light had decreased photosynthesis performance compared with blue or white light-grown plants. The primary and secondary metabolites, such as organic acids, amino acids and phenylpropanoids (measured by non-targeted metabolomics of polar metabolites), were regulated differently under the different light qualities. Specifically, the levels of reduced ascorbic acid and its oxidation products, and the total ascorbate pool, were significantly different between blue light-grown plants and plants grown under white or red:blue light, which imply photosynthesis-driven alterations in oxidative pressure under different light regimens. The overall differences in plant phenotype, inflicted by blue, red:blue or red light, are probably due to a shift in balance between regulatory pathways controlled by blue light receptors and/or phytochrome. Although morphology, physiology, and metabolism differed substantially between plants grown under different qualities of light, these changes had limited effects on biomass accumulation.


Subject(s)
Chrysanthemum , Biomass , Photosynthesis/physiology , Plant Leaves/metabolism , Plants
13.
Front Endocrinol (Lausanne) ; 14: 1211015, 2023.
Article in English | MEDLINE | ID: mdl-37745723

ABSTRACT

Aims/hypothesis: Appearance of multiple islet cell autoantibodies in early life is indicative of future progression to overt type 1 diabetes, however, at varying rates. Here, we aimed to study whether distinct metabolic patterns could be identified in rapid progressors (RP, disease manifestation within 18 months after the initial seroconversion to autoantibody positivity) vs. slow progressors (SP, disease manifestation at 60 months or later from the appearance of the first autoantibody). Methods: Longitudinal samples were collected from RP (n=25) and SP (n=41) groups at the ages of 3, 6, 12, 18, 24, or ≥ 36 months. We performed a comprehensive metabolomics study, analyzing both polar metabolites and lipids. The sample series included a total of 239 samples for lipidomics and 213 for polar metabolites. Results: We observed that metabolites mediated by gut microbiome, such as those involved in tryptophan metabolism, were the main discriminators between RP and SP. The study identified specific circulating molecules and pathways, including amino acid (threonine), sugar derivatives (hexose), and quinic acid that may define rapid vs. slow progression to type 1 diabetes. However, the circulating lipidome did not appear to play a major role in differentiating between RP and SP. Conclusion/interpretation: Our study suggests that a distinct metabolic profile is linked with the type 1 diabetes progression. The identification of specific metabolites and pathways that differentiate RP from SP may have implications for early intervention strategies to delay the development of type 1 diabetes.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans , Humans , Child , Metabolomics , Amino Acids , Autoantibodies
14.
Curr Opin Chem Biol ; 76: 102370, 2023 10.
Article in English | MEDLINE | ID: mdl-37473482

ABSTRACT

The objective of this review is to provide a comprehensive summary of the latest methodological advancements and emerging patterns in utilizing lipidomics in clinical research.In this review, we assess the recent advancements in lipidomics methodologies that exhibit high levels of selectivity and sensitivity, capable of generating numerous molecular lipid species from limited quantities of biological matrices. The reviewed studies demonstrate that molecular lipid signatures offer new opportunities for precision medicine by providing sensitive diagnostic tools for disease prediction and monitoring. Moreover, the latest innovations in microsampling techniques have the potential to make a substantial contribution to clinical lipidomics. The review also shows that more work is needed to harmonize results across diverse lipidomics platforms and avoid significant errors in analysis and reporting. The increased implementation of internal standards and standard reference materials in analytical workflows will aid in this direction.


Subject(s)
Lipidomics , Lipids , Lipids/analysis , Lipid Metabolism , Mass Spectrometry , Workflow
15.
Environ Int ; 176: 107965, 2023 06.
Article in English | MEDLINE | ID: mdl-37210808

ABSTRACT

There is growing evidence suggesting that chemical exposure alters gut microbiota composition. However, not much is known about the impact of per- and polyfluoroalkyl substances (PFAS) on the gut microbial community. Here, in a mother-infant study, we set out to identify the gut bacterial species that associate with chemical exposure before (maternal) and after (maternal, infant) birth. Paired serum and stool samples were collected from mother-infant dyads (n = 30) in a longitudinal setting. PFAS were quantified in maternal serum to examine their associations with the microbial compositions (determined by shotgun metagenomic sequencing) in mothers and infants. High maternal exposure to PFAS was consistently associated with increased abundance of Methanobrevibacter smithii in maternal stool. Among individual PFAS compounds, PFOS and PFHpS showed the strongest association with M. smithii. However, maternal total PFAS exposure associated only weakly with the infant microbiome. Our findings suggest that PFAS exposure affects the composition of the adult gut microbiome.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Microbiota , Adult , Female , Humans , Infant , Mothers , Maternal Exposure , Bacteria/genetics , Fluorocarbons/toxicity
16.
BMC Psychiatry ; 23(1): 268, 2023 04 19.
Article in English | MEDLINE | ID: mdl-37076825

ABSTRACT

INTRODUCTION: Psychiatric disorders are common and significantly impact the quality of life. Inflammatory processes are proposed to contribute to the emergence of psychiatric disorders. In addition to inflammation, disturbances in metabolic pathways have been observed in individuals with different psychiatric disorders. A suggested key player in the interaction between inflammation and metabolism is the Nod-like receptor 3 (NLRP3) inflammasome, and NLRP3 is known to react to a number of specific metabolites. However, little is known about the interplay between these immunometabolites and the NLRP3 inflammasome in mental health disorders. AIM: To assess the interplay between immunometabolites and inflammasome function in a transdiagnostic cohort of individuals with severe mental disorders. METHODS: Mass spectrometry-based analysis of selected immunometabolites, previously known to affect inflammasome function, were performed in plasma from low-functioning individuals with severe mental disorders (n = 39) and sex and aged-matched healthy controls (n = 39) using a transdiagnostic approach. Mann Whitney U test was used to test differences in immunometabolites between psychiatric patients and controls. To assess the relationship between inflammasome parameters, disease severity, and the immunometabolites, Spearman's rank-order correlation test was used. Conditional logistic regression was used to control for potential confounding variables. Principal component analysis was performed to explore immunometabolic patterns. RESULTS: Among the selected immunometabolites (n = 9), serine, glutamine, and lactic acid were significantly higher in the patient group compared to the controls. After adjusting for confounders, the differences remained significant for all three immunometabolites. No significant correlations were found between immunometabolites and disease severity. CONCLUSION: Previous research on metabolic changes in mental disorders has not been conclusive. This study shows that severely ill patients have common metabolic perturbations. The changes in serine, glutamine, and lactic acid could constitute a direct contribution to the low-grade inflammation observed in severe psychiatric disorders.


Subject(s)
Inflammasomes , Mental Disorders , Humans , Aged , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Glutamine , Quality of Life , Inflammation/metabolism
17.
Nat Microbiol ; 8(5): 787-802, 2023 05.
Article in English | MEDLINE | ID: mdl-37069399

ABSTRACT

Anorexia nervosa (AN) is an eating disorder with a high mortality. About 95% of cases are women and it has a population prevalence of about 1%, but evidence-based treatment is lacking. The pathogenesis of AN probably involves genetics and various environmental factors, and an altered gut microbiota has been observed in individuals with AN using amplicon sequencing and relatively small cohorts. Here we investigated whether a disrupted gut microbiota contributes to AN pathogenesis. Shotgun metagenomics and metabolomics were performed on faecal and serum samples, respectively, from a cohort of 77 females with AN and 70 healthy females. Multiple bacterial taxa (for example, Clostridium species) were altered in AN and correlated with estimates of eating behaviour and mental health. The gut virome was also altered in AN including a reduction in viral-bacterial interactions. Bacterial functional modules associated with the degradation of neurotransmitters were enriched in AN and various structural variants in bacteria were linked to metabolic features of AN. Serum metabolomics revealed an increase in metabolites associated with reduced food intake (for example, indole-3-propionic acid). Causal inference analyses implied that serum bacterial metabolites are potentially mediating the impact of an altered gut microbiota on AN behaviour. Further, we performed faecal microbiota transplantation from AN cases to germ-free mice under energy-restricted feeding to mirror AN eating behaviour. We found that the reduced weight gain and induced hypothalamic and adipose tissue gene expression were related to aberrant energy metabolism and eating behaviour. Our 'omics' and mechanistic studies imply that a disruptive gut microbiome may contribute to AN pathogenesis.


Subject(s)
Anorexia Nervosa , Gastrointestinal Microbiome , Humans , Female , Animals , Mice , Male , Anorexia Nervosa/microbiology , Metabolomics , Feces/microbiology , Feeding Behavior , Bacteria/genetics
18.
Cardiovasc Res ; 119(7): 1537-1552, 2023 07 04.
Article in English | MEDLINE | ID: mdl-36880401

ABSTRACT

AIMS: Pro-protein convertase subtilisin-kexin type 9 (PCSK9), which is expressed mainly in the liver and at low levels in the heart, regulates cholesterol levels by directing low-density lipoprotein receptors to degradation. Studies to determine the role of PCSK9 in the heart are complicated by the close link between cardiac function and systemic lipid metabolism. Here, we sought to elucidate the function of PCSK9 specifically in the heart by generating and analysing mice with cardiomyocyte-specific Pcsk9 deficiency (CM-Pcsk9-/- mice) and by silencing Pcsk9 acutely in a cell culture model of adult cardiomyocyte-like cells. METHODS AND RESULTS: Mice with cardiomyocyte-specific deletion of Pcsk9 had reduced contractile capacity, impaired cardiac function, and left ventricular dilatation at 28 weeks of age and died prematurely. Transcriptomic analyses revealed alterations of signalling pathways linked to cardiomyopathy and energy metabolism in hearts from CM-Pcsk9-/- mice vs. wild-type littermates. In agreement, levels of genes and proteins involved in mitochondrial metabolism were reduced in CM-Pcsk9-/- hearts. By using a Seahorse flux analyser, we showed that mitochondrial but not glycolytic function was impaired in cardiomyocytes from CM-Pcsk9-/- mice. We further showed that assembly and activity of electron transport chain (ETC) complexes were altered in isolated mitochondria from CM-Pcsk9-/- mice. Circulating lipid levels were unchanged in CM-Pcsk9-/- mice, but the lipid composition of mitochondrial membranes was altered. In addition, cardiomyocytes from CM-Pcsk9-/- mice had an increased number of mitochondria-endoplasmic reticulum contacts and alterations in the morphology of cristae, the physical location of the ETC complexes. We also showed that acute Pcsk9 silencing in adult cardiomyocyte-like cells reduced the activity of ETC complexes and impaired mitochondrial metabolism. CONCLUSION: PCSK9, despite its low expression in cardiomyocytes, contributes to cardiac metabolic function, and PCSK9 deficiency in cardiomyocytes is linked to cardiomyopathy, impaired heart function, and compromised energy production.


Subject(s)
Myocytes, Cardiac , Proprotein Convertase 9 , Animals , Mice , Energy Metabolism , Lipids , Mitochondria/metabolism , Myocytes, Cardiac/metabolism , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , Receptors, LDL/genetics , Receptors, LDL/metabolism , Subtilisin/metabolism
19.
Metabolites ; 13(3)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36984795

ABSTRACT

Current evidence suggests that gut microbiome-derived lipids play a crucial role in the regulation of host lipid metabolism. However, not much is known about the dynamics of gut microbial lipids within the distinct gut biogeographic. Here we applied targeted and untargeted lipidomics to in vitro-derived feces. Simulated intestinal chyme was collected from in vitro gut vessels (V1-V4), representing proximal to distal parts of the colon after 24 and 48 h with/without polydextrose treatment. In total, 44 simulated chyme samples were collected from the in vitro colon simulator. Factor analysis showed that vessel and time had the strongest impact on the simulated intestinal chyme lipid profiles. We found that levels of phosphatidylcholines, sphingomyelins, triacylglycerols, and endocannabinoids were altered in at least one vessel (V1-V4) during simulation. We also found that concentrations of triacylglycerols, diacylglycerols, and endocannabinoids changed with time (24 vs. 48 h of simulation). Together, we found that the simulated intestinal chyme revealed a wide range of lipids that remained altered in different compartments of the human colon model over time.

20.
iScience ; 26(3): 106268, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36915680

ABSTRACT

Previous prospective studies suggest that progression to autoimmune diseases is preceded by metabolic dysregulation, but it is not clear which metabolic changes are disease-specific and which are common across multiple immune-mediated diseases. Here we investigated metabolic profiles in cord serum in a general population cohort (All Babies In Southeast Sweden; ABIS), comprising infants who progressed to one or more immune-mediated diseases later in life: type 1 diabetes (n = 12), celiac disease (n = 28), juvenile idiopathic arthritis (n = 9), inflammatory bowel disease (n = 7), and hypothyroidism (n = 6); and matched controls (n = 270). We observed elevated levels of multiple triacylglycerols (TGs) an alteration in several gut microbiota related metabolites in the autoimmune groups. The most distinct differences were observed in those infants who later developed HT. The specific similarities observed in metabolic profiles across autoimmune diseases suggest that they share specific common metabolic phenotypes at birth that contrast with those of healthy controls.

SELECTION OF CITATIONS
SEARCH DETAIL
...