Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Pflugers Arch ; 476(11): 1761-1775, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39210062

ABSTRACT

Taste buds contain 2 types of GABA-producing cells: sour-responsive Type III cells and glial-like Type I cells. The physiological role of GABA, released by Type III cells is not fully understood. Here, we investigated the role of GABA released from Type III cells using transgenic mice lacking the expression of GAD67 in taste bud cells (Gad67-cKO mice). Immunohistochemical experiments confirmed the absence of GAD67 in Type III cells of Gad67-cKO mice. Furthermore, no difference was observed in the expression and localization of cell type markers, ectonucleoside triphosphate diphosphohydrolase 2 (ENTPD2), gustducin, and carbonic anhydrase 4 (CA4) in taste buds between wild-type (WT) and Gad67-cKO mice. Short-term lick tests demonstrated that both WT and Gad67-cKO mice exhibited normal licking behaviors to each of the five basic tastants. Gustatory nerve recordings from the chorda tympani nerve demonstrated that both WT and Gad67-cKO mice similarly responded to five basic tastants when they were applied individually. However, gustatory nerve responses to sweet-sour mixtures were significantly smaller than the sum of responses to each tastant in WT mice but not in Gad67-cKO mice. In summary, elimination of GABA signalling by sour-responsive Type III taste cells eliminates the inhibitory cell-cell interactions seen with application of sour-sweet mixtures.


Subject(s)
Glutamate Decarboxylase , Taste Buds , Taste , gamma-Aminobutyric Acid , Animals , Taste Buds/metabolism , Taste Buds/physiology , gamma-Aminobutyric Acid/metabolism , Mice , Glutamate Decarboxylase/metabolism , Glutamate Decarboxylase/genetics , Taste/physiology , Signal Transduction/physiology , Mice, Knockout , Mice, Inbred C57BL , Chorda Tympani Nerve/physiology
2.
Arch Oral Biol ; 165: 106013, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38833772

ABSTRACT

OBJECTIVE: Saliva serves multiple important functions crucial for maintaining a healthy oral and systemic environment. Among them, the pH buffering effect, which is primarily mediated by bicarbonate ions, helps maintain oral homeostasis by neutralizing acidity from ingested foods. Therefore, higher buffering capacity, reflecting the ability to neutralize oral acidity, may influence taste sensitivity, especially for sour taste since it involves sensing H+ ions. This study aims to explore the relationship between salivary buffering capacity and taste sensitivities to the five basic tastes in healthy adult humans. DESIGN: Eighty seven healthy adult students participated in this study. Resting saliva volume was measured using the spitting method. The liquid colorimetric test was used to assess salivary buffering capacity. The whole-mouth taste testing method was employed to determine the recognition threshold for each tastant (NaCl, sucrose, citric acid, quinine-HCl, monosodium glutamate). RESULTS: Taste recognition thresholds for sour taste as well as sweet, salty, and bitter tastes showed no correlation with salivary buffering capacity. Interestingly, a negative relationship was observed between recognition threshold for umami taste and salivary buffering capacity. Furthermore, a positive correlation between salivary buffering capacity and resting saliva volume was observed. CONCLUSIONS: Salivary buffering capacity primarily influences sensitivity to umami taste, but not sour and other tastes.


Subject(s)
Buffers , Hydrogen-Ion Concentration , Saliva , Taste Perception , Taste Threshold , Adult , Female , Humans , Male , Young Adult , Citric Acid , Colorimetry , East Asian People , Healthy Volunteers , Japan , Saliva/chemistry , Saliva/metabolism , Taste/physiology , Taste Perception/physiology , Taste Threshold/physiology
SELECTION OF CITATIONS
SEARCH DETAIL