Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Pharmacol Res Perspect ; 10(3): e00973, 2022 06.
Article in English | MEDLINE | ID: mdl-35621227

ABSTRACT

Hyperphosphatemia associated with chronic kidney disease (CKD) not only dysregulates mineral metabolism and bone diseases, but also strongly contributes to the progression of kidney disease itself. We have identified a novel drug for hyperphosphatemia, EOS789, that interacts with several sodium-dependent phosphate transporters (NaPi-IIb, PiT-1, and PiT-2) known to contribute to intestinal phosphate absorption. In this study, we investigated whether EOS789 could ameliorate kidney disease progression in glomerulonephritis rats. Anti-glomerular basement membrane (GBM) nephritis was induced in rats by intravenously administering two types of anti-rat GBM antibodies. We evaluated the effect of EOS789 administered in food admixture on hyperphosphatemia and kidney disease progression. In an anti-GBM nephritis rats, which exhibit a significant increase in serum phosphate and a decline in renal function, EOS789 dose-dependently improved hyperphosphatemia and EOS789 at 0.3% food admixture significantly ameliorated kidney dysfunction as shown in the decline of serum creatinine and BUN. Renal histopathology analysis showed that EOS789 significantly decreased crescent formation in glomeruli. To elucidate the mechanism underlying glomerular disease progression, human mesangial cells were used. High phosphate concentration in media significantly increased the expression of Collagen 1A1, 3A1, and αSMA mRNA in human mesangial cells and EOS789 dose-dependently suppressed these fibrotic markers. These results indicate that EOS789 prevented glomerular crescent formation caused by mesangial fibrosis by ameliorating hyperphosphatemia. In conclusion, EOS789 would not only be useful against hyperphosphatemia but may also have the potential to relieve mesangial proliferative glomerulonephritis with crescent formation.


Subject(s)
Glomerulonephritis , Hyperphosphatemia , Phosphate Transport Proteins , Animals , Autoantibodies , Disease Progression , Fibrosis , Glomerulonephritis/chemically induced , Glomerulonephritis/drug therapy , Hyperphosphatemia/drug therapy , Hyperphosphatemia/pathology , Kidney , Phosphate Transport Proteins/antagonists & inhibitors , Phosphates/pharmacology , Rats , Rats, Inbred WKY
2.
PLoS One ; 17(3): e0265081, 2022.
Article in English | MEDLINE | ID: mdl-35271660

ABSTRACT

Claudin-1 (CL-1) is responsible for the paracellular barrier function of glomerular parietal epithelial cells (PEC) in kidneys, but the role of CL-1 in proximal tubules remains to be elucidated. In this study, to evaluate CL-1 as a potential therapeutic drug target for chronic kidney disease, we investigated change of CL-1 expression in the proximal tubules of diseased kidney and elucidated the factors that induced this change. We established Alport mice as a kidney disease model and investigated the expression of CL-1 in diseased kidney using quantitative PCR and immunohistochemistry (IHC). Compared to wild type mice, Alport mice showed significant increases in plasma creatinine, urea nitrogen and urinary albumin excretion. CL-1 mRNA was increased significantly in the kidney cortex and CL-1 was localized on the adjacent cell surfaces of PECs and proximal tubular epithelial cells. The infiltration of inflammatory cells around proximal tubules and a significant increase in TNF-α mRNA were observed in diseased kidneys. To reveal factors that induce CL-1, we analyzed the induction of CL-1 by albumin or tumor necrosis factor (TNF)-α in human proximal tubular cells (RPTEC/TERT1) using quantitative PCR and Western blotting. TNF-α increased CL-1 expression dose-dependently, though albumin did not affect CL-1 expression in RPTEC/TERT1. In addition, both CL-1 and TNF-α expression were significantly increased in UUO mice, which are commonly used as a model of tubulointerstitial inflammation without albuminuria. These results indicate that CL-1 expression is induced by inflammation, not by albuminuria in diseased proximal tubules. Moreover, we examined the localization of CL-1 in the kidney of IgA nephropathy patients by IHC and found CL-1 expression was also elevated in the proximal tubular cells. Taken together, CL-1 expression is increased in the proximal tubular epithelial cells of diseased kidney. Inflammatory cells around the tubular epithelium may produce TNF-α which in turn induces CL-1 expression.


Subject(s)
Glomerulonephritis, IGA , Tumor Necrosis Factor-alpha , Albumins/metabolism , Albuminuria/pathology , Animals , Claudin-1/genetics , Claudin-1/metabolism , Female , Glomerulonephritis, IGA/pathology , Humans , Inflammation/pathology , Kidney Tubules, Proximal/metabolism , Male , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tumor Necrosis Factor-alpha/metabolism
3.
Kidney Int ; 98(2): 343-354, 2020 08.
Article in English | MEDLINE | ID: mdl-32624180

ABSTRACT

Chronic kidney disease is characterized as impaired renal function along with the imbalance and dysregulation of mineral metabolism; recognized as chronic kidney disease-mineral and bone disorder. Hyperphosphatemia, characterized by altered phosphate homeostasis along with elevated fibroblast growth factor-23 and intact parathyroid hormone, is such an alteration of mineral metabolism. We discovered a novel inhibitor, EOS789, that interacts with several sodium-dependent phosphate transporters (NaPi-IIb, PiT-1, and PiT-2) known to contribute to intestinal phosphate absorption. This inhibitor dose-dependently increased the fecal phosphorus excretion rate and inversely decreased the urinary phosphorus excretion rate in normal rats, suggesting inhibition of intestinal phosphorus absorption. In rats with adenine-induced hyperphosphatemia, EOS789 markedly decreased the serum phosphate, fibroblast growth factor-23, and intact parathyroid hormone below values found in normal control rats. Notably, this pan-phosphate transporter inhibitor exhibited a more potent effect on serum phosphate than a NaPi-IIb-selective inhibitor in rats with hyperphosphatemia indicating that PiT-1 and PiT-2 play important roles in intestinal phosphate absorption. Moreover, in a long-term study, EOS789 sustained the suppression of serum phosphorus in parallel with fibroblast growth factor-23 and intact parathyroid hormone and ameliorated ectopic calcification of the thoracic aorta. Additionally, EOS789 treatment also ameliorated kidney deterioration in rats with progressive kidney injury, probably due to the strict phosphate control. Thus, EOS789 has potent efficacy against hyperphosphatemia and its complications and could provide a significant benefit to patients who are ineffectively treated with phosphate binders.


Subject(s)
Chronic Kidney Disease-Mineral and Bone Disorder , Hyperphosphatemia , Renal Insufficiency, Chronic , Animals , Humans , Hyperphosphatemia/drug therapy , Minerals , Phosphate Transport Proteins , Phosphates/metabolism , Rats , Renal Insufficiency, Chronic/drug therapy
4.
Eur J Pharm Sci ; 117: 161-167, 2018 May 30.
Article in English | MEDLINE | ID: mdl-29448044

ABSTRACT

Claudin-2 (CLDN-2), a pore-forming tight junction protein with a tetra-transmembrane domain, is involved in carcinogenesis and the metastasis of some cancers. Although CLDN-2 is highly expressed in the tight junctions of the liver and kidney, whether CLDN-2 is a safe target for cancer therapy remains unknown. We recently generated a rat monoclonal antibody (mAb, clone 1A2) that recognizes the extracellular domains of human and mouse CLDN-2. Here, we investigated the safety of CLDN-2-targeted cancer therapy by using 1A2 as a model therapeutic antibody. Because most human therapeutic mAbs are IgG1 subtype that can induce antibody-dependent cellular cytotoxicity, we generated a human-rat chimeric IgG1 form of 1A2 (xi-1A2). xi-1A2 activated Fcγ receptor IIIa in the presence of CLDN-2-expressing cells, indicating that xi-1A2 likely exerts antibody-dependent cellular cytotoxicity. At 24 h after its intravenous injection, xi-1A2 was distributed into the liver, kidney, and tumor tissues of mice bearing CLDN-2-expressing fibrosarcoma cells. Treatment of the xenografted mice with xi-1A2 attenuated tumor growth without apparent adverse effects, such as changes in body weight and biochemical markers of liver and kidney injury. These results support xi-1A2 as the lead candidate mAb for safe CLDN-2-targeted cancer therapy.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/therapeutic use , Claudin-2/immunology , Neoplasms/drug therapy , Protein Domains/immunology , Animals , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Female , Humans , Immunoglobulin G/immunology , Jurkat Cells , Kidney/metabolism , Liver/metabolism , Mice, Inbred BALB C , Neoplasms/immunology , Neoplasms/metabolism , Rats , Receptors, IgG/genetics , Receptors, IgG/immunology
5.
Anal Chem ; 89(20): 10783-10789, 2017 10 17.
Article in English | MEDLINE | ID: mdl-28972746

ABSTRACT

Claudins (CLs) are membrane proteins found in tight junctions and play a major role in establishing the intercellular barrier. However, some CLs are abnormally overexpressed on tumor cells and are valid clinical biomarkers for cancer diagnosis. Here, we constructed antibody Fab fragment-based Quenchbodies (Q-bodies) as effective and reliable fluorescent sensors for detecting and visualizing CLs on live tumor cells. The variable region genes for anti-CL1 and anti-CL4 antibodies were used to express recombinant Fab fragments, and clones recognizing CL4 with high affinity were selected for making Q-bodies. When two fluorescent dyes were conjugated to the N-terminal tags attached to the Fab, the fluorescent signal was significantly increased after adding nanomolar-levels of purified CL4. Moreover, addition of the Q-body to CL4-expressing cells including CL4-positive cancer cells led to a clear fluorescence signal with low background, even without washing steps. Our findings suggested that such Q-bodies would serve as a potent tool for specifically illuminating membrane targets expressed on cancer cells, both in vitro and in vivo.


Subject(s)
Claudins/analysis , Immunoglobulin Fab Fragments/immunology , Microscopy, Confocal , Biomarkers, Tumor/analysis , Cell Line, Tumor , Claudins/immunology , Fluorescent Dyes/chemistry , Humans , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Spectrometry, Fluorescence , Tight Junctions/metabolism
6.
J Pharmacol Exp Ther ; 363(3): 444-451, 2017 12.
Article in English | MEDLINE | ID: mdl-28928120

ABSTRACT

Disruption of the gastrointestinal epithelial barrier is a hallmark of chronic inflammatory bowel diseases (IBDs). The transmembrane protein claudin 2 (CLDN2) is a component of epithelial tight junctions (TJs). In the intestines of patients with IBDs, the expression of the pore-forming TJ protein CLDN2 is upregulated. Although CLDN2 is involved in these leaky barriers, whether it can be a target to enhance TJ integrity is unknown because a CLDN2-specific inhibitor has not been developed. Here, we used DNA immunization to generate a monoclonal antibody (mAb) that recognized an extracellular loop of CLDN2. Treatment of epithelial cell monolayers with the mAb increased barrier integrity. In addition, the anti-CLDN2 mAb attenuated the decrease in TJ integrity induced by the proinflammatory cytokine tumor necrosis factor-α (TNF-α), and cotreatment of cells with anti-TNF-α mAb and anti-CLDN2 mAb showed additive attenuating effects. These findings indicate that CLDN2 may be a target for enhancing TJ integrity, and CLDN2 binder may be an enhancer of mucosal barrier integrity and a potential therapeutic option for IBDs.


Subject(s)
Claudins/metabolism , Inflammatory Bowel Diseases/metabolism , Tight Junctions/metabolism , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Cell Line, Tumor , Claudins/immunology , Female , Humans , Inflammatory Bowel Diseases/therapy , Intestinal Mucosa/metabolism , Mice , Mice, Inbred BALB C , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
7.
Biochem Biophys Res Commun ; 477(1): 91-95, 2016 08 12.
Article in English | MEDLINE | ID: mdl-27286708

ABSTRACT

Claudin-1 (CLDN-1), an integral transmembrane protein, is an attractive target for drug absorption, prevention of infection, and cancer therapy. Previously, we generated mouse anti-CLDN-1 monoclonal antibodies (mAbs) and found that they enhanced epidermal absorption of a drug and prevented hepatitis C virus infection in human hepatocytes. Here, we investigated anti-tumor activity of a human-mouse chimeric IgG1, xi-3A2, from one of the anti-CLDN-1 mAbs, clone 3A2. Xi-3A2 accumulated in the tumor tissues in mice bearing with human CLDN-1-expressing tumor cells. Xi-3A2 activated Fcγ receptor IIIa-expressing reporter cells in the presence of human CLDN-1-expressing cells, suggesting xi-3A2 has a potential to exhibit antibody-dependent cellular cytotoxicity against CLDN-1 expressing tumor cells. We also constructed a mutant xi-3A2 antibody with Gly, Ser, and Ile substituted with Ala, Asp, and Arg at positions 236, 239, and 332 of the Fc domain. This mutant antibody showed greater activation of Fcγ receptor IIIa and in vivo anti-tumor activity in mice bearing human CLDN-1-expressing tumors than xi-3A2 did. These findings indicate that the G236A/S239D/I332E mutant of xi-3A2 might be a promising lead for tumor therapy.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Claudin-1/immunology , Disease Models, Animal , Neoplasms/therapy , Animals , Antibody-Dependent Cell Cytotoxicity , Cell Line, Tumor , Chimera , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Xenograft Model Antitumor Assays
8.
J Pharmacol Exp Ther ; 354(3): 440-7, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26139628

ABSTRACT

Tight junctions (TJs) are complex biochemical structures that seal the intercellular space and prevent the free movement of solutes across epithelial cell sheets. Modulating the TJ seal is a promising option for increasing the transdermal absorption of drugs. Within TJs, the binding of the claudin (CLDN) family of tetratransmembrane proteins through cis- and trans-interactions is an integral part of seal formation. Because epidermal TJs contain CLDN-1 and CLDN-4, a binder for these CLDNs may be a useful modulator of the permeability of the epidermal barrier. Here, we investigated whether m19, which can bind to CLDN-1/-4 (also CLDN-2/-5), modulates the integrity of epidermal TJs and the permeability of cell sheets to solutes. Treatment of normal human epidermal keratinocytes (NHEKs) with the CLDN binder reduced the integrity of TJs. A CLDN-1-specific binder (a monoclonal antibody, clone 7A5) also weakened the TJ seal in NHEKs. Although m19 attenuated the TJ barrier in human intestinal epithelial cells (Caco-2), 7A5 did not. Treatment of NHEKs with 7A5 enhanced permeation of a paracellular permeation marker. These findings indicate that CLDN-1 is a potential target for modulating the permeability of the epidermis, and that our CLDN-1 binder is a promising candidate molecule for development as a dermal absorption enhancer.


Subject(s)
Claudin-1/metabolism , Keratinocytes/metabolism , Protein Binding/physiology , Caco-2 Cells , Cell Line, Tumor , Claudin-4/metabolism , Epidermis/metabolism , Epithelial Cells/metabolism , Humans , Membrane Proteins/metabolism , Permeability , Tight Junctions/metabolism
9.
J Virol ; 89(9): 4866-79, 2015 May.
Article in English | MEDLINE | ID: mdl-25673725

ABSTRACT

UNLABELLED: Hepatitis C virus (HCV) entry into host cells is a complex process requiring multiple host factors, including claudin-1 (CLDN1). Safe and effective therapeutic entry inhibitors need to be developed. We isolated a human hepatic Huh7.5.1-derived cell mutant that is nonpermissive to HCV, and comparative microarray analysis showed that the mutant was CLDN1 defective. Four hybridomas were obtained, which produced monoclonal antibodies (MAbs) that interacted with the parental Huh7.5.1 cell but not with the CLDN1-defective mutant. All MAbs produced by these hybridomas specifically bound to human CLDN1 with a very high affinity and prevented HCV infection of Huh7.5.1 cells in a dose-dependent manner, without apparent cytotoxicity. Two selected MAbs also inhibited HCV infection of human liver-chimeric mice without significant adverse effects. CLDN1 may be a potential target to prevent HCV infection in vivo. Anti-CLDN1 MAbs may hence be promising candidates as novel anti-HCV agents. IMPORTANCE: Safe and effective therapeutic entry inhibitors against hepatitis C virus (HCV) are very useful for combination therapies with other anti-HCV drugs, such as direct-acting antivirals. In this study, we first showed an effective strategy for developing functional monoclonal antibodies (MAbs) against extracellular domains of a multimembrane-spanning target protein, claudin-1 (CLDN1), by using parental cells expressing the intact target membrane protein and target-defective cells. The established MAbs against CLDN1, which had a very high affinity for intact CLDN1, efficiently inhibited in vitro and in vivo HCV infections. These anti-CLDN1 MAbs are promising leads for novel entry inhibitors against HCV.


Subject(s)
Antibodies, Monoclonal/immunology , Claudin-1/antagonists & inhibitors , Hepacivirus/physiology , Hepatitis C/prevention & control , Receptors, Virus/antagonists & inhibitors , Virus Internalization/drug effects , Animals , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/therapeutic use , Cell Line , Claudin-1/immunology , Disease Models, Animal , Drug-Related Side Effects and Adverse Reactions , Hepacivirus/drug effects , Hepatocytes/virology , Humans , Male , Mice , Receptors, Virus/immunology , Treatment Outcome
10.
J Pharmacol Exp Ther ; 353(1): 112-8, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25628391

ABSTRACT

Claudin-1 (CLDN1), a known host factor for hepatitis C virus (HCV) entry and cell-to-cell transmission, is a target molecule for inhibiting HCV infection. We previously developed four clones of mouse anti-CLDN1 monoclonal antibody (mAb) that prevented HCV infection in vitro. Two of these mAbs showed the highest antiviral activity. Here, we optimized the anti-CLDN1 mAbs as candidates for therapeutics by protein engineering. Although Fab fragments of the mAbs prevented in vitro HCV infection, their inhibitory effects were much weaker than those of the whole mAbs. In contrast, human chimeric IgG1 mAbs generated by grafting the variable domains of the mouse mAb light and heavy chains inhibited in vitro HCV infection as efficiently as the parental mouse mAbs. However, the chimeric IgG1 mAbs activated Fcγ receptor, suggesting that cytotoxicity against mAb-bound CLDN1-expressing cells occurred through the induction of antibody-dependent cellular cytotoxicity (ADCC). To avoid ADCC-induced side effects, we prepared human chimeric IgG4 mAbs. The chimeric IgG4 mAbs did not activate Fcγ receptor or induce ADCC, but they prevented in vitro HCV infection as efficiently as did the parental mouse mAbs. These findings indicate that the IgG4 form of human chimeric anti-CLDN1 mAb may be a candidate molecule for clinically applicable HCV therapy.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antiviral Agents/pharmacology , Claudin-1/immunology , Hepacivirus/drug effects , Animals , Antibodies, Monoclonal/genetics , Cell Line , Humans , Immunoglobulin Fc Fragments/genetics , Immunoglobulin G/genetics , Immunoglobulin G/pharmacology , Mice , Receptors, IgG/metabolism , Virus Internalization/drug effects
11.
J Pharmacol Exp Ther ; 351(1): 206-13, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25118216

ABSTRACT

Most malignant tumors are derived from epithelium, and claudin (CLDN)-3 and CLDN-4 are frequently overexpressed in such tumors. Although antibodies have potential in cancer diagnostics and therapy, development of antibodies against CLDNs has been difficult because the extracellular domains of CLDNs are too small and there is high homology among human, rat, and mouse sequences. Here, we created a monoclonal antibody that recognizes human CLDN-3 and CLDN-4 by immunizing rats with a plasmid vector encoding human CLDN-4. A hybridoma clone that produced a rat monoclonal antibody recognizing both CLDN-3 and -4 (clone 5A5) was obtained from a hybridoma screen by using CLDN-3- and -4-expressing cells; 5A5 did not bind to CLDN-1-, -2-, -5-, -6-, -7-, or -9-expressing cells. Fluorescence-conjugated 5A5 injected into xenograft mice bearing human cancer MKN74 or LoVo cells could visualize the tumor cells. The human-rat chimeric IgG1 monoclonal antibody (xi5A5) activated FcγRIIIa in the presence of CLDN-3- or -4-expressing cells, indicating that xi5A5 may exert antibody-dependent cellular cytotoxicity. Administration of xi5A5 attenuated tumor growth in xenograft mice bearing MKN74 or LoVo cells. These results suggest that 5A5 shows promise in the development of a diagnostic and therapeutic antibody for cancers.


Subject(s)
Antibodies, Monoclonal/immunology , Antibody-Dependent Cell Cytotoxicity , Claudin-3/immunology , Claudin-4/immunology , Neoplasms, Experimental/therapy , Animals , Antibodies, Monoclonal/therapeutic use , Cell Line , Cell Line, Tumor , Female , Humans , Immunoglobulin G/immunology , Immunoglobulin G/therapeutic use , Immunotherapy , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasms, Experimental/diagnosis , Rats , Rats, Wistar , Receptors, IgG/immunology , Xenograft Model Antitumor Assays
12.
Biol Pharm Bull ; 36(11): 1867-9, 2013.
Article in English | MEDLINE | ID: mdl-24189431

ABSTRACT

In this study, we evaluated a baculoviral display system for analysis of viral entry by using a recombinant adenovirus (Ad) carrying a luciferase gene and budded baculovirus (BV) that displays the adenoviral receptor, coxsackievirus and adenovirus receptor (CAR). CAR-expressing B16 cells (B16-CAR cells) were infected with luciferase-expressing Ad vector in the presence of BV that expressed or lacked CAR (CAR-BV and mock-BV, respectively). Treatment with mock-BV even at doses as high as 5 µg/mL failed to attenuate the luciferase activity of B16-CAR cells. In contrast, treatment with CAR-BV with doses as low as 0.5 µg/mL significantly decreased the luciferase activity of infected cells, which reached 65% reduction at 5 µg/mL. These findings suggest that a receptor-displaying BV system could be used to evaluate viral infection.


Subject(s)
Adenoviridae Infections/genetics , Adenoviridae/genetics , Baculoviridae/genetics , Coxsackie and Adenovirus Receptor-Like Membrane Protein/genetics , Luciferases/metabolism , Adenoviridae Infections/metabolism , Animals , Cell Line, Tumor , Genetic Vectors , Luciferases/genetics , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...