Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39037014

ABSTRACT

AIM: Adverse childhood experiences are potentially traumatic events with long-lasting effects on the health and well-being of patients with autism spectrum disorder (ASD). It is important to clarify which types of long-lasting autism-related symptoms are influenced by childhood experiences to design future intervention studies. However, few studies have examined the association between childhood experiences and autistic symptoms in large samples of adults with ASD and individuals with typical development (TD). In this study, we evaluate the effects of adverse childhood experiences on multiple ASD phenotypes among both individuals with ASD and those with TD. METHOD: We combined questionnaire evaluations; Childhood Abuse and Trauma Scale, the Japanese version of the Autism-Spectrum Quotient, Conners' Adult ADHD Rating Scale, the Japanese version of the Impact of Event Scale-Revised, and the Japanese version of the Adolescent/Adult Sensory Profile. RESULTS: Individuals with ASD and those with TD (n = 205 and 104, respectively) were included. There were significant correlations between the extent of adverse childhood experiences and severity of attention-deficit/hyperactivity disorder symptoms, posttraumatic stress disorder symptoms, and hypersensitivity in both participants with ASD and those with TD. By contrast, ASD core symptoms showed no significant correlation with adverse childhood experiences in either group. These results remained consistent after adjusting for age, sex, and the estimated intelligence quotient. CONCLUSION: These findings suggest the need for a detailed disentanglement of ASD-related core and peripheral symptoms of adverse childhood experiences, which may help to appropriately set outcomes for future early interventions for the childhood experiences of individuals with ASD.

2.
Mol Autism ; 15(1): 10, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38383466

ABSTRACT

BACKGROUND: A growing body of evidence suggests that immune dysfunction and inflammation in the peripheral tissues as well as the central nervous system are associated with the neurodevelopmental deficits observed in autism spectrum disorder (ASD). Elevated expression of pro-inflammatory cytokines in the plasma, serum, and peripheral blood mononuclear cells of ASD has been reported. These cytokine expression levels are associated with the severity of behavioral impairments and symptoms in ASD. In a prior study, our group reported that tumor necrosis factor-α (TNF-α) expression in granulocyte-macrophage colony-stimulating factor-induced macrophages (GM-CSF MΦ) and the TNF-α expression ratio in GM-CSF MΦ/M-CSF MΦ (macrophage colony-stimulating factor-induced macrophages) was markedly higher in individuals with ASD than in typically developed (TD) individuals. However, the mechanisms of how the macrophages and the highly expressed cytokines affect neurons remain to be addressed. METHODS: To elucidate the effect of macrophages on human neurons, we used a co-culture system of control human-induced pluripotent stem cell-derived neurons and differentiated macrophages obtained from the peripheral blood mononuclear cells of five TD individuals and five individuals with ASD. All participants were male and ethnically Japanese. RESULTS: Our results of co-culture experiments showed that GM-CSF MΦ affect the dendritic outgrowth of neurons through the secretion of pro-inflammatory cytokines, interleukin-1α and TNF-α. Macrophages derived from individuals with ASD exerted more severe effects than those derived from TD individuals. LIMITATIONS: The main limitations of our study were the small sample size with a gender bias toward males, the use of artificially polarized macrophages, and the inability to directly observe the interaction between neurons and macrophages from the same individuals. CONCLUSIONS: Our co-culture system revealed the non-cell autonomous adverse effects of GM-CSF MΦ in individuals with ASD on neurons, mediated by interleukin-1α and TNF-α. These results may support the immune dysfunction hypothesis of ASD, providing new insights into its pathology.


Subject(s)
Autism Spectrum Disorder , Cytokines , Female , Male , Humans , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Macrophage Colony-Stimulating Factor/metabolism , Macrophage Colony-Stimulating Factor/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Leukocytes, Mononuclear/metabolism , Interleukin-1alpha/metabolism , Interleukin-1alpha/pharmacology , Autism Spectrum Disorder/metabolism , Cells, Cultured , Sexism , Macrophages/metabolism , Granulocytes/metabolism , Dendrites/metabolism
3.
Mol Psychiatry ; 29(5): 1338-1349, 2024 May.
Article in English | MEDLINE | ID: mdl-38243072

ABSTRACT

Microglia and brain-derived neurotrophic factor (BDNF) are essential for the neuroplasticity that characterizes critical developmental periods. The experience-dependent development of social behaviors-associated with the medial prefrontal cortex (mPFC)-has a critical period during the juvenile period in mice. However, whether microglia and BDNF affect social development remains unclear. Herein, we aimed to elucidate the effects of microglia-derived BDNF on social behaviors and mPFC development. Mice that underwent social isolation during p21-p35 had increased Bdnf in the microglia accompanied by reduced adulthood sociability. Additionally, transgenic mice overexpressing microglial Bdnf-regulated using doxycycline at different time points-underwent behavioral, electrophysiological, and gene expression analyses. In these mice, long-term overexpression of microglial BDNF impaired sociability and excessive mPFC inhibitory neuronal circuit activity. However, administering doxycycline to normalize BDNF from p21 normalized sociability and electrophysiological function in the mPFC, whereas normalizing BDNF from later ages (p45-p50) did not normalize electrophysiological abnormalities in the mPFC, despite the improved sociability. To evaluate the possible role of BDNF in human sociability, we analyzed the relationship between adverse childhood experiences and BDNF expression in human macrophages, a possible proxy for microglia. Results show that adverse childhood experiences positively correlated with BDNF expression in M2 but not M1 macrophages. In summary, our study demonstrated the influence of microglial BDNF on the development of experience-dependent social behaviors in mice, emphasizing its specific impact on the maturation of mPFC function, particularly during the juvenile period. Furthermore, our results propose a translational implication by suggesting a potential link between BDNF secretion from macrophages and childhood experiences in humans.


Subject(s)
Brain-Derived Neurotrophic Factor , Mice, Transgenic , Microglia , Neurons , Prefrontal Cortex , Social Behavior , Animals , Female , Humans , Male , Mice , Brain-Derived Neurotrophic Factor/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Microglia/metabolism , Neuronal Plasticity/physiology , Neurons/metabolism , Prefrontal Cortex/metabolism , Social Isolation/psychology
4.
Res Sq ; 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37461488

ABSTRACT

Microglia and brain-derived neurotrophic factor (BDNF) are essential for the neuroplasticity that characterizes critical developmental periods. The experience-dependent development of social behaviors-associated with the medial prefrontal cortex (mPFC)-has a critical period during the juvenile period in mice. However, whether microglia and BDNF affect social development remains unclear. Herein, we aimed to elucidate the effects of microglia-derived BDNF on social behaviors and mPFC development. Mice that underwent social isolation during p21-p35 had increased Bdnf in the microglia accompanied by reduced adulthood sociability. Additionally, transgenic mice overexpressing microglia Bdnf-regulated using doxycycline at different time points-underwent behavioral, electrophysiological, and gene expression analyses. In these mice, long-term overexpression of microglia BDNF impaired sociability and excessive mPFC inhibitory neuronal circuit activity. However, administration of doxycycline to normalize BDNF from p21 normalized sociability and electrophysiological functions; this was not observed when BDNF was normalized from a later age (p45-p50). To evaluate the possible role of BDNF in human sociability, we analyzed the relationship between adverse childhood experiences and BDNF expression in human macrophages, a possible substitute for microglia. Results show that adverse childhood experiences positively correlated with BDNF expression in M2 but not M1 macrophages. Thus, microglia BDNF might regulate sociability and mPFC maturation in mice during the juvenile period. Furthermore, childhood experiences in humans may be related to BDNF secretion from macrophages.

5.
Cereb Cortex ; 33(7): 3591-3606, 2023 03 21.
Article in English | MEDLINE | ID: mdl-35945688

ABSTRACT

A lack of juvenile social experience causes various behavioral impairments and brain dysfunction, especially in the medial prefrontal cortex (mPFC). Our previous studies revealed that juvenile social isolation for 2 weeks immediately after weaning affects the synaptic inputs and intrinsic excitability of fast-spiking parvalbumin-expressing (FSPV) interneurons as well as a specific type of layer 5 (L5) pyramidal cells, which we termed prominent h-current (PH) cells, in the mPFC. However, since these changes were observed at the adult age of postnatal day 65 (P65), the primary cause of these changes to neurons immediately after juvenile social isolation (postnatal day 35) remains unknown. Here, we investigated the immediate effects of juvenile social isolation on the excitability and synaptic inputs of PH pyramidal cells and FSPV interneurons at P35 using whole-cell patch-clamp recording. We observed that excitatory inputs to FSPV interneurons increased immediately after juvenile social isolation. We also found that juvenile social isolation increases the firing reactivity of a subtype of FSPV interneurons, whereas only a fractional effect was detected in PH pyramidal cells. These findings suggest that juvenile social isolation primarily disturbs the developmental rebuilding of circuits involving FSPV interneurons and eventually affects the circuits involving PH pyramidal cells in adulthood.


Subject(s)
Interneurons , Parvalbumins , Animals , Mice , Parvalbumins/metabolism , Interneurons/physiology , Neurons/physiology , Pyramidal Cells/physiology , Prefrontal Cortex/physiology , Social Isolation
SELECTION OF CITATIONS
SEARCH DETAIL