Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Biomedicines ; 10(7)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35884767

ABSTRACT

We attempted throughout the NO-system to achieve the particular counteraction of the ketamine-induced resembling "negative-like" schizophrenia symptoms in rats using pentadecapeptide BPC 157, and NO-agents, NG-nitro-L-arginine methylester (L-NAME), and/or L-arginine, triple application. This might be the find out the NO-system organized therapy (i.e., simultaneously implied NO-system blockade (L-NAME) vs. NO-system over-stimulation (L-arginine) vs. NO-system immobilization (L-NAME+L-arginine)). The ketamine regimen (intraperitoneally/kg) included: 3 mg (cognitive dysfunction, novel object recognition test), 30 mg (anxiogenic effect (open field test) and anhedonia (sucrose test)), and 8 mg/3 days (social withdrawal). Medication (mg/kg intraperitoneally) was L-NAME (5), L-arginine (100), and BPC 157 (0.01), alone and/or together, given immediately before ketamine (L-NAME, L-arginine, and combination) or given immediately after (BPC 157 and combinations). BPC 157 counteracted ketamine-cognition dysfunction, social withdrawal, and anhedonia, and exerted additional anxiolytic effect. L-NAME (antagonization, social withdrawal) and L-arginine (antagonization, cognitive dysfunction, anhedonia) both included worsening cognitive dysfunction, anhedonia, and anxiogenic effect (L-NAME), social withdrawal, and anxiogenic effect (L-arginine). Thus, ketamine-induced resembling "negative-like" schizophrenia symptoms were "L-NAME non-responsive, L-arginine responsive" (cognition dysfunction), "L-NAME responsive, L-arginine non-responsive" (social withdrawal), "L-NAME responsive, L-arginine responsive, opposite effect" (anhedonia) and "L-NAME responsive, L-arginine responsive, parallel effect" (both anxiogening). In cognition dysfunction, BPC 157 overwhelmed NO-agents effects. The mRNA expression studies in brain tissue evidenced considerable overlapping of gene overexpression in healthy rats treated with ketamine or BPC 157. With the BPC 157 therapy applied immediately after ketamine, the effect on Nos1, Nos2, Plcg1, Prkcg, and Ptgs2 (increased or decreased expression), appeared as a timely specific BPC 157 effect on ketamine-specific targets.

2.
Neural Regen Res ; 17(3): 482-487, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34380875

ABSTRACT

We reviewed the pleiotropic beneficial effects of the stable gastric pentadecapeptide BPC 157, three very recent demonstrations that may be essential in the gut-brain and brain-gut axis operation, and therapy application in the central nervous system disorders, in particular. Firstly, given in the reperfusion, BPC 157 counteracted bilateral clamping of the common carotid arteries-induced stroke, sustained brain neuronal damages were resolved in rats as well as disturbed memory, locomotion, and coordination. This therapy effect supports particular gene expression in hippocampal tissues that appeared in BPC 157-treated rats. Secondly, there are L-NG-nitro arginine methyl ester (L-NAME)- and haloperidol-induced catalepsy as well as the rat acute and chronic models of 'positive-like' schizophrenia symptoms, that BPC 157 counteracted, and resolved the complex relationship of the nitric oxide-system with amphetamine and apomorphine (dopamine agents application), MK-801 (non-competitive antagonist of the N-methyl-D-aspartate receptor) and chronic methamphetamine administration (to induce sensitivity). Thirdly, after rat spinal cord compression, there were advanced healing and functional recovery (counteracted tail paralysis). Likewise, in BPC 157 therapy, there is specific support for each of these topics: counteracted encephalopathies; alleviated vascular occlusion disturbances (stroke); counteracted dopamine disturbances (dopamine receptors blockade, receptors super sensitivity development, or receptor activation, over-release, nigrostriatal damage, vesicles depletion), and nitric oxide-system disturbances ("L-NAME non-responsive, L-arginine responsive," and "L-NAME responsive, L-arginine responsive") (schizophrenia therapy); inflammation reduction, nerve recovery in addition to alleviated hemostasis and vessels function after compression (spinal cord injury therapy). Thus, these disturbances may be all resolved within the same agent's beneficial activity, i.e., the stable gastric pentadecapeptide BPC 157.

3.
Biomedicines ; 9(11)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34829735

ABSTRACT

Due to endothelial impairment, high-dose lithium may produce an occlusive-like syndrome, comparable to permanent occlusion of major vessel-induced syndromes in rats; intracranial, portal, and caval hypertension, and aortal hypotension; multi-organ dysfunction syndrome; brain, heart, lung, liver, kidney, and gastrointestinal lesions; arterial and venous thrombosis; and tissue oxidative stress. Stable gastric pentadecapeptide BPC 157 may be a means of therapy via activating loops (bypassing vessel occlusion) and counteracting major occlusion syndromes. Recently, BPC 157 counteracted the lithium sulfate regimen in rats (500 mg/kg/day, ip, for 3 days, with assessment at 210 min after each administration of lithium) and its severe syndrome (muscular weakness and prostration, reduced muscle fibers, myocardial infarction, and edema of various brain areas). Subsequently, BPC 157 also counteracted the lithium-induced occlusive-like syndrome; rapidly counteracted brain swelling and intracranial (superior sagittal sinus) hypertension, portal hypertension, and aortal hypotension, which otherwise would persist; counteracted vessel failure; abrogated congestion of the inferior caval and superior mesenteric veins; reversed azygos vein failure; and mitigated thrombosis (superior mesenteric vein and artery), congestion of the stomach, and major hemorrhagic lesions. Both regimens of BPC 157 administration also counteracted the previously described muscular weakness and prostration (as shown in microscopic and ECG recordings), myocardial congestion and infarction, in addition to edema and lesions in various brain areas; marked dilatation and central venous congestion in the liver; large areas of congestion and hemorrhage in the lung; and degeneration of proximal and distal tubules with cytoplasmic vacuolization in the kidney, attenuating oxidative stress. Thus, BPC 157 therapy overwhelmed high-dose lithium intoxication in rats.

4.
Behav Brain Res ; 396: 112919, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32956773

ABSTRACT

In the suited rat-models, we focused on the stable pentadecapeptide BPC 157, L-NAME, NOS-inhibitor, and L-arginine, NOS-substrate, relation, the effect on schizophrenia-like symptoms. Medication (mg/kg intraperitoneally) was L-NAME (5), L-arginine (100), BPC 157 (0.01), given alone and/or together, at 5 min before the challenge for the acutely disturbed motor activity (dopamine-indirect/direct agonists (amphetamine (3.0), apomorphine (2.5)), NMDA-receptor non-competitive antagonist (MK-801 (0.2)), or catalepsy, (dopamine-receptor antagonist haloperidol (2.0)). Alternatively, BPC 157 10 µg/kg was given immediately after L-NAME 40 mg/kg intraperitoneally. To induce or prevent sensitization, we used chronic methamphetamine administration, alternating 3 days during the first 3 weeks, and challenge after next 4 weeks, and described medication (L-NAME, L-arginine, BPC 157) at 5 min before the methamphetamine at the second and third week. Given alone, BPC 157 or L-arginine counteracted the amphetamine-, apomorphine-, and MK-801-induced effect, haloperidol-induced catalepsy and chronic methamphetamine-induced sensitization. L-NAME did not affect the apomorphine-, and MK-801-induced effects, haloperidol-induced catalepsy and chronic methamphetamine-induced sensitization, but counteracted the acute amphetamine-induced effect. In combinations (L-NAME + L-arginine), as NO-specific counteraction, L-NAME counteracts L-arginine-induced counteractions in the apomorphine-, MK-801-, haloperidol- and methamphetamine-rats, but not in amphetamine-rats. Unlike L-arginine, BPC 157 maintains its counteracting effect in the presence of the NOS-blockade (L-NAME + BPC 157) or NO-system-over-stimulation (L-arginine + BPC 157). Illustrating the BPC 157-L-arginine relationships, BPC 157 restored the antagonization (L-NAME + L-arginine + BPC 157) when it had been abolished by the co-administration of L-NAME with L-arginine (L-NAME + L-arginine). Finally, BPC 157 directly inhibits the L-NAME high dose-induced catalepsy. Further studies would determine precise BPC 157/dopamine/glutamate/NO-system relationships and clinical application.


Subject(s)
Amphetamine/pharmacology , Apomorphine/pharmacology , Arginine/pharmacology , Catalepsy , Dizocilpine Maleate/pharmacology , Dopamine Agents/pharmacology , Enzyme Inhibitors/pharmacology , Haloperidol/pharmacology , NG-Nitroarginine Methyl Ester/pharmacology , Neuroprotective Agents/pharmacology , Nitric Oxide Synthase , Peptide Fragments/pharmacology , Proteins/pharmacology , Schizophrenia , Amphetamine/administration & dosage , Animals , Apomorphine/administration & dosage , Arginine/administration & dosage , Behavior, Animal/drug effects , Catalepsy/chemically induced , Catalepsy/drug therapy , Catalepsy/physiopathology , Disease Models, Animal , Dizocilpine Maleate/administration & dosage , Dopamine Agents/administration & dosage , Enzyme Inhibitors/administration & dosage , Haloperidol/administration & dosage , Male , NG-Nitroarginine Methyl Ester/administration & dosage , Neuroprotective Agents/administration & dosage , Nitric Oxide Synthase/antagonists & inhibitors , Peptide Fragments/administration & dosage , Proteins/administration & dosage , Rats , Rats, Wistar , Schizophrenia/chemically induced , Schizophrenia/drug therapy , Schizophrenia/physiopathology
5.
World J Gastroenterol ; 23(29): 5304-5312, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-28839430

ABSTRACT

AIM: To counteract/reveal celecoxib-induced toxicity and NO system involvement. METHODS: Celecoxib (1 g/kg b.w. ip) was combined with therapy with stable gastric pentadecapeptide BPC 157 (known to inhibit these lesions, 10 µg/kg, 10 ng/kg, or 1 ng/kg ip) and L-arginine (100 mg/kg ip), as well as NOS blockade [N(G)-nitro-L-arginine methyl ester (L-NAME)] (5 mg/kg ip) given alone and/or combined immediately after celecoxib. Gastrointestinal, liver, and brain lesions and liver enzyme serum values in rats were assessed at 24 h and 48 h thereafter. RESULTS: This high-dose celecoxib administration, as a result of NO system dysfunction, led to gastric, liver, and brain lesions and increased liver enzyme serum values. The L-NAME-induced aggravation of the lesions was notable for gastric lesions, while in liver and brain lesions the beneficial effect of L-arginine was blunted. L-arginine counteracted gastric, liver and brain lesions. These findings support the NO system mechanism(s), both NO system agonization (L-arginine) and NO system antagonization (L-NAME), that on the whole are behind all of these COX phenomena. An even more complete antagonization was identified with BPC 157 (at both 24 h and 48 h). A beneficial effect was evident on all the increasingly negative effects of celecoxib and L-NAME application and in all the BPC 157 groups (L-arginine + BPC 157; L-NAME + BPC 157; L-NAME + L-arginine + BPC 157). Thus, these findings demonstrated that BPC 157 may equally counteract both COX-2 inhibition (counteracting the noxious effects of celecoxib on all lesions) and additional NOS blockade (equally counteracting the noxious effects of celecoxib + L-NAME). CONCLUSION: BPC 157 and L-arginine alleviate gastrointestinal, liver and brain lesions, redressing NSAIDs' post-surgery application and NO system involvement.


Subject(s)
Anti-Ulcer Agents/therapeutic use , Arginine/therapeutic use , Brain/drug effects , Chemical and Drug Induced Liver Injury/drug therapy , Cyclooxygenase 2 Inhibitors/toxicity , Stomach Ulcer/drug therapy , Animals , Antidotes/therapeutic use , Brain/pathology , Celecoxib/administration & dosage , Celecoxib/toxicity , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/pathology , Cyclooxygenase 2 Inhibitors/administration & dosage , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Therapy, Combination/methods , Humans , Liver/drug effects , Liver/pathology , Male , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide/metabolism , Nitric Oxide Synthase/metabolism , Peptide Fragments/therapeutic use , Proteins/therapeutic use , Rats , Rats, Wistar , Stomach/drug effects , Stomach/pathology , Stomach Ulcer/chemically induced , Stomach Ulcer/pathology
6.
Curr Pharm Des ; 20(7): 1126-35, 2014.
Article in English | MEDLINE | ID: mdl-23755725

ABSTRACT

We reviewed stable gastric pentadecapeptide BPC 157-NO-system-relation, its close participation in Moncada's (maintained vascular integrity, platelets control) homeostatic healing response of NO-system to injury. Namely, BPC 157's particular healing effect also affects all events after vascular integrity loss (dependent on circumstances, it reduces either thrombosis (abdominal aorta anastomosis) or bleeding/thrombocytopenia (amputation, heparin, warfarin, aspirin)) and in a series of different injurious models, acute and chronic, BPC 157 consistently advances healing after severe injuries in various tissues spontaneously unable to heal; stimulates egr-1 and naB2 genes; exhibits high safety (LD1 not achieved)). Hypothesis, that BPC 157 (since formed constitutively in the gastric mucosa, stable in human gastric juice, along with significance of NO-synthase and the basal formation of NO in stomach mucosa, greater than that seen in other tissues) exhibits a general, effective competing both with L-arginine analogues (i. e., L-NAME) and L-arginine, and that this has some physiologic importance (NO-generation), later, practically supports its beneficial effects illustrating BPC 157 and NOsystem mutual (with L-NAME/L-arginine; alone and together) relations in (i) gastric mucosa and mucosal protection, following alcohol lesions, in cytoprotection course, NO-generation, and blood pressure regulation; (ii) alcohol acute/chronic intoxication, and withdrawal; (iii) cardiovascular disturbances, chronic heart failure, pulmonary hypertension, and arrhythmias; (iv) disturbances after hypokalemia and hyperkalemia, and potassium-cell membrane dysfunction; and finally, in (v) complex healing failure, proved by the fistulas healing, colocutaneous and esophagocutaneous. However, how this advantage of modulating NO-system (i. e., particular effect on eNOS gene), may be practically translated into an enhanced clinical performance remains to be determined.


Subject(s)
Nitric Oxide/metabolism , Peptide Fragments/physiology , Proteins/physiology , Animals , Cardiovascular Diseases/drug therapy , Disease Models, Animal , Gastric Mucosa/drug effects , Gastric Mucosa/physiology , Gastric Mucosa/physiopathology , Humans , Peptide Fragments/pharmacology , Peptide Fragments/therapeutic use , Proteins/pharmacology , Proteins/therapeutic use , Wound Healing/drug effects , Wound Healing/physiology
7.
Curr Pharm Des ; 19(1): 76-83, 2013.
Article in English | MEDLINE | ID: mdl-22950504

ABSTRACT

Stable gastric pentadecapeptide BPC 157 is an anti-ulcer peptidergic agent, proven in clinical trials to be both safe in inflammatory bowel disease (PL-10, PLD-116, PL 14736) and wound healing, stable in human gastric juice, with no toxicity being reported. Recently, we claim that BPC 157 may be used as an antidote against NSAIDs. We focused on BPC 157 beneficial effects on stomach, duodenum, intestine, liver and brain injuries, adjuvant arthritis, pain, hyper/hypothermia, obstructive thrombus formation and thrombolysis, blood vessel function, counteraction of prolonged bleeding and thrombocytopenia after application of various anticoagulants and antiplatelet agents and wound healing improvement. The arguments for BPC 157 antidote activity (i.e., the role of BPC 157 in cytoprotection, being a novel mediator of Robert's cytoprotection and BPC 157 beneficial effects on NSAIDs mediated lesions in the gastrointestinal tract, liver and brain and finally, counteraction of aspirin-induced prolonged bleeding and thrombocytopenia) obviously have a counteracting effect on several established side-effects of NSAIDs use. The mentioned variety of the beneficial effects portrayed by BPC 157 may well be a foundation for establishing BPC 157 as a NSAIDs antidote since no other single agent has portrayed a similar array of effects. Unlike NSAIDs, a very high safety (no reported toxicity (LD1 could be not achieved)) profile is reported for BPC 157. Also, unlike the different dosage levels of aspirin, as a NSAIDs prototype, which differ by a factor of about ten, all these beneficial and counteracting effects of BPC 157 were obtained using the equipotent dosage (µg, ng/kg) in parenteral or peroral regimens.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Antidotes/therapeutic use , Peptide Fragments/therapeutic use , Proteins/therapeutic use , Animals , Anti-Ulcer Agents/adverse effects , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Antidotes/adverse effects , Antidotes/pharmacology , Aspirin/adverse effects , Brain/drug effects , Brain/physiopathology , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/physiopathology , Humans , Liver/drug effects , Liver/physiopathology , Peptide Fragments/adverse effects , Peptide Fragments/pharmacology , Proteins/adverse effects , Proteins/pharmacology
8.
Eur J Pharmacol ; 667(1-3): 322-9, 2011 Sep 30.
Article in English | MEDLINE | ID: mdl-21645505

ABSTRACT

Chronic ibuprofen (0.4 g/kg intraperitoneally, once daily for 4 weeks) evidenced a series of pathologies, not previously reported in ibuprofen-dosed rats, namely hepatic encephalopathy, gastric lesions, hepatomegaly, increased AST and ALT serum values with prolonged sedation/unconsciousness, and weight loss. In particular, ibuprofen toxicity was brain edema, particularly in the cerebellum, with the white matter being more affected than in gray matter. In addition, damaged and red neurons, in the absence of anti-inflammatory reaction was observed, particularly in the cerebral cortex and cerebellar nuclei, but was also present although to a lesser extent in the hippocampus, dentate nucleus and Purkinje cells. An anti-ulcer peptide shown to have no toxicity, the stable gastric pentadecapeptide BPC 157 (GEPPPGKPADDAGLV, MW 1419, 10 µg, 10 ng/kg) inhibited the pathology seen with ibuprofen (i) when given intraperitoneally, immediately after ibuprofen daily or (ii) when given in drinking water (0.16 µg, 0.16 ng/ml). Counteracted were all adverse effects, such as hepatic encephalopathy, the gastric lesions, hepatomegaly, increased liver serum values. In addition, BPC 157 treated rats showed no behavioral disturbances and maintained normal weight gain. Thus, apart from efficacy in inflammatory bowel disease and various wound treatments, BPC 157 was also effective when given after ibuprofen.


Subject(s)
Anti-Ulcer Agents/pharmacology , Hepatic Encephalopathy/prevention & control , Hepatomegaly/prevention & control , Ibuprofen/adverse effects , Peptides/pharmacology , Stomach Diseases/prevention & control , Stomach/drug effects , Amino Acid Sequence , Animals , Anti-Ulcer Agents/adverse effects , Behavior, Animal/drug effects , Brain/drug effects , Brain/pathology , Brain Injuries/chemically induced , Gastric Mucosa/metabolism , Hepatic Encephalopathy/chemically induced , Hepatic Encephalopathy/pathology , Hepatomegaly/chemically induced , Hepatomegaly/pathology , Ibuprofen/antagonists & inhibitors , Liver/drug effects , Liver/enzymology , Liver/pathology , Male , Molecular Sequence Data , Organ Size/drug effects , Peptides/adverse effects , Peptides/chemistry , Rats , Rats, Wistar , Stomach/injuries , Stomach/pathology , Stomach Diseases/chemically induced , Stomach Diseases/pathology
9.
Curr Pharm Des ; 17(16): 1612-32, 2011.
Article in English | MEDLINE | ID: mdl-21548867

ABSTRACT

Stable gastric pentadecapeptide BPC 157 is an anti-ulcer peptidergic agent, safe in inflammatory bowel disease clinical trials (GEPPPGKPADDAGLV, M.W. 1419, PL 14736) and wound healing, stable in human gastric juice and has no reported toxicity. We focused on BPC 157 as a therapy in peridontitis, esophagus, stomach, duodenum, intestine, liver and pancreas lesions. Particularly, it has a prominent effect on alcohol-lesions (i.e., acute, chronic) and NSAIDs-lesions (interestingly, BPC 157 both prevents and reverses adjuvant arthritis). In rat esophagitis and failed function of both lower esophageal sphincter (LES) and pyloric sphincters (PS), BPC 157 increased pressure in both sphincters till normal and reduced esophagitis. However, in healthy rats, it may decrease (PS) or increase (LES) the pressure in sphincters. It has strong angiogenic potential, it acts protectively on endothelium, prevents and reverses thrombus formation after abdominal aorta anastomosis, affects many central disturbances (i.e., dopamine and 5-HT system), the NO-system (either L-arginine and L-NAME effects), endothelin, acts as a free radical scavenger (counteracting CCl4-, paracetamol-, diclofenac-injuries) and exhibits neuroprotective properties. BPC 157 successfully heals the intestinal anastomosis, gastrocutaneous, duodenocutaneous and colocutaneous fistulas in rats, as well as interacting with the NO-system. Interestingly, the fistula closure was achieved even when the BPC 157 therapy was postponed for one month. In short-bowel syndrome escalating throughout 4 weeks, the constant weight gain above preoperative values started immediately with peroral and parental BPC 157 therapy and the villus height, crypth depth and muscle thickness (inner (circular) muscular layer) additionally increased. Thus, BPC 157 may improve gastrointestinal tract therapy.


Subject(s)
Anti-Ulcer Agents/therapeutic use , Gastrointestinal Diseases/drug therapy , Peptide Fragments/therapeutic use , Proteins/therapeutic use , Animals , Humans , Rats
10.
Life Sci ; 88(11-12): 535-42, 2011 Mar 14.
Article in English | MEDLINE | ID: mdl-21295044

ABSTRACT

AIMS: We attempted to fully antagonize the extensive toxicity caused by NSAIDs (using diclofenac as a prototype). MAIN METHODS: Herein, we used the stable gastric pentadecapeptide BPC 157 (GEPPPGKPADDAGLV, MW 1419), an anti-ulcer peptide shown to be efficient in inflammatory bowel disease clinical trials (PL 14736) and various wound treatments with no toxicity reported. This peptide was given to antagonize combined gastrointestinal, liver, and brain toxicity induced by diclofenac (12.5mg/kg intraperitoneally, once daily for 3 days) in rats. KEY FINDINGS: Already considered a drug that can reverse the toxic side effects of NSAIDs, BPC 157 (10 µg/kg, 10 ng/kg) was strongly effective throughout the entire experiment when given (i) intraperitoneally immediately after diclofenac or (ii) per-orally in drinking water (0.16 µg/mL, 0.16 ng/mL). Without BPC 157 treatment, at 3h following the last diclofenac challenge, we encountered a complex deleterious circuit of diclofenac toxicity characterized by severe gastric, intestinal and liver lesions, increased bilirubin, aspartate transaminase (AST), alanine transaminase (ALT) serum values, increased liver weight, prolonged sedation/unconsciousness (after any diclofenac challenge) and finally hepatic encephalopathy (brain edema particularly located in the cerebral cortex and cerebellum, more in white than in gray matter, damaged red neurons, particularly in the cerebral cortex and cerebellar nuclei, Purkinje cells and less commonly in the hippocampal neurons). SIGNIFICANCE: The very extensive antagonization of diclofenac toxicity achieved with BPC 157 (µg-/ng-regimen, intraperitoneally, per-orally) may encourage its further use as a therapy to counteract diclofenac- and other NSAID-induced toxicity.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Anti-Ulcer Agents/therapeutic use , Chemical and Drug Induced Liver Injury/prevention & control , Diclofenac , Gastrointestinal Diseases/prevention & control , Hepatic Encephalopathy/prevention & control , Peptide Fragments/therapeutic use , Proteins/therapeutic use , Administration, Oral , Animals , Anti-Ulcer Agents/administration & dosage , Behavior, Animal/drug effects , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/pathology , Disease Models, Animal , Gastric Mucosa/drug effects , Gastric Mucosa/pathology , Gastrointestinal Diseases/chemically induced , Gastrointestinal Diseases/pathology , Hepatic Encephalopathy/etiology , Hepatic Encephalopathy/pathology , Injections, Intraperitoneal , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Liver Function Tests , Male , Peptide Fragments/administration & dosage , Proteins/administration & dosage , Rats , Rats, Wistar
11.
Curr Pharm Des ; 16(10): 1224-34, 2010.
Article in English | MEDLINE | ID: mdl-20166993

ABSTRACT

The significance of cytoprotection and adaptive cytoprotection and the peptides importance remained to be not completely determined. BPC 157 is an anti-ulcer peptidergic agent, proven in clinical trials to be both safe in inflammatory bowel disease (PL-10, PLD-116, PL 14736) and wound healing, and stable in human gastric juice, with no toxicity being reported. It has a prominent effect on alcohol- lesions (i.e., induced acutely and chronically) and non-steroidal anti-inflammatory drugs-lesions (while interestingly BPC 157 may both prevent and reverse adjuvant arthritis). To review the importance of BPC 157, this review focused on Robert's cytoprotection concept described in rat stomach, reviewing our evidence that may resolve whether the cytoprotection and adaptive cytoprotection is an uniform phenomenon or not; whether the phenomenon or phenomena are endogenous or not, depending on nature of the irritants (mild or strong); whether this may contribute to stomach mucosa defense either when threaten by various ulcerogens or afforded by various antiulcer agents; whether these phenomena are uniform in whole gastrointestinal tract or not; whether they are interrelated or not. Finally, the importance of the cytoprotection phenomena and cytoprotection activity for skin wound healing, and wound healing in general was challenged. Thereby, this review focused on BPC 157 role in cytoprotection and adaptative cytoprotection suggesting that it may be the essential endogenous mediator able to mediate both cytoprotective and adaptive cytoprotective response in stomach and the whole gastrointestinal tract with significant importance in wound healing as well.


Subject(s)
Anti-Ulcer Agents/pharmacology , Cytoprotection , Peptide Fragments/pharmacology , Proteins/pharmacology , Animals , Anti-Ulcer Agents/therapeutic use , Gastric Acid/chemistry , Gastrointestinal Tract/pathology , Humans , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/pathology , Peptide Fragments/therapeutic use , Proteins/therapeutic use , Rats , Stomach Ulcer/drug therapy , Wound Healing/drug effects
12.
Dig Dis Sci ; 54(1): 46-56, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18649140

ABSTRACT

OBJECTIVE: This study focused on unhealed gastrocutaneous fistulas to resolve whether standard drugs that promote healing of gastric ulcers may simultaneously have the same effect on cutaneous wounds, and corticosteroid aggravation, and to demonstrate why peptides such as BPC 157 exhibit a greater healing effect. Therefore, with the fistulas therapy, we challenge the wound/growth factors theory of the analogous nonhealing of wounds and persistent gastric ulcers. METHODS: The healing rate of gastrocutaneous fistula in rat (2-mm-diameter stomach defect, 3-mm-diameter skin defect) validates macro/microscopically and biomechanically a direct skin wound/stomach ulcer relation, and identifies a potential therapy consisting of: (i) stable gastric pentadecapeptide BPC 157 [in drinking water (10 microg/kg) (12 ml/rat/day) or intraperitoneally (10 microg/kg, 10 ng/kg, 10 pg/kg)], (ii) atropine (10 mg/kg), ranitidine (50 mg/kg), and omeprazole (50 mg/kg), (iii) 6-alpha-methylprednisolone (1 mg/kg) [intraperitoneally, once daily, first application at 30 min following surgery; last 24 h before sacrifice (at postoperative days 1, 2, 3, 7, 14, and 21)]. RESULTS: Greater anti-ulcer potential and efficiency in wound healing compared with standard agents favor BPC 157, efficient in inflammatory bowel disease (PL-14736, Pliva), given in drinking water or intraperitoneally. Even after 6-alpha-methylprednisolone aggravation, BPC 157 promptly improves both skin and stomach mucosa healing, and closure of fistulas, with no leakage after up to 20 ml water intragastrically. Standard anti-ulcer agents, after a delay, improve firstly skin healing and then stomach mucosal healing, but not fistula leaking and bursting strength (except for atropine). CONCLUSION: We conclude that BPC 157 may resolve analogous nonhealing of wounds and persistent gastric ulcers better than standard agents.


Subject(s)
Anti-Ulcer Agents/therapeutic use , Cutaneous Fistula/drug therapy , Gastric Fistula/drug therapy , Peptide Fragments/therapeutic use , Proteins/therapeutic use , Stomach Ulcer/drug therapy , Wound Healing/drug effects , Adrenal Cortex Hormones/pharmacology , Adrenal Cortex Hormones/therapeutic use , Animals , Anti-Ulcer Agents/pharmacology , Atropine/pharmacology , Atropine/therapeutic use , Cutaneous Fistula/pathology , Disease Models, Animal , Gastric Fistula/pathology , Gastric Mucosa/drug effects , Male , Omeprazole/pharmacology , Omeprazole/therapeutic use , Peptide Fragments/pharmacology , Proteins/pharmacology , Ranitidine/pharmacology , Ranitidine/therapeutic use , Rats , Rats, Wistar , Stomach Ulcer/pathology
13.
Dig Dis Sci ; 54(10): 2070-83, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19093208

ABSTRACT

The gastric pentadecapeptide BPC 157, which was shown to be safe as an antiulcer peptide in trials for inflammatory bowel disease (PL14736, Pliva), successfully healed intestinal anastomosis and fistula in rat. Therefore, we studied for 4 weeks rats with escalating short bowel syndrome and progressive weight loss after small bowel resection from fourth ileal artery cranially of ileocecal valve to 5 cm beneath pylorus. BPC 157 (10 microg/kg or 10 ng/kg) was given perorally, in drinking water (12 ml/rat/day) or intraperitoneally (once daily, first application 30 min following surgery, last 24 h before sacrifice). Postoperatively, features of increasingly exhausted presentation were: weight loss appearing immediately regardless of villus height, twofold increase in crypt depth and fourfold increase in muscle thickness within the first week, jejunal and ileal overdilation, and disturbed jejunum/ileum relation. In contrast, constant weight gain above preoperative values was observed immediately with BPC 157 therapy, both perorally and parenterally, and villus height, crypt depth, and muscle thickness [inner (circular) muscular layer] also increased, at 7, 14, 21, and 28 days. Moreover, rats treated with pentadecapeptide BPC 157 showed not different jejunal and ileal diameters, constant jejunum-to-ileum ratio, and increased anastomosis breaking strength. In conclusion, pentadecapeptide BPC 157 could be helpful to cure short bowel syndrome.


Subject(s)
Anti-Ulcer Agents/therapeutic use , Peptide Fragments/therapeutic use , Proteins/therapeutic use , Short Bowel Syndrome/drug therapy , Animals , Anti-Ulcer Agents/pharmacology , Intestine, Small/pathology , Male , Peptide Fragments/pharmacology , Proteins/pharmacology , Random Allocation , Rats , Rats, Wistar
14.
J Pharmacol Sci ; 108(1): 7-17, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18818478

ABSTRACT

We focused on the therapeutic effect of the stable gastric pentadecapeptide BPC 157 and how its action is related to nitric oxide (NO) in persistent colocutaneous fistula in rats (at 5 cm from anus, colon defect of 5 mm, skin defect of 5 mm); this peptide has been shown to be safe in clinical trials for inflammatory bowel disease (PL14736) and safe for intestinal anstomosis therapy. BPC 157 (10 microg/kg, 10 ng/kg) was applied i) in drinking water until the animals were sacrificed at post-operative day 1, 3, 5, 7, 14, 21, and 28; or ii) once daily intraperitoneally (first application 30 min following surgery, last 24 h before sacrifice) alone or with N(G)-nitro-L-arginine methyl ester (L-NAME) (5 mg/kg), L-arginine (200 mg/kg), and their combinations. Sulphasalazine (50 mg/kg) and 6-alpha-methylprednisolone (1 mg/kg) were given once daily intraperitoneally. BPC 157 accelerated parenterally or perorally the healing of colonic and skin defect, leading to the suitable closure of the fistula, macro/microscopically, biomechanically, and functionally (larger water volume sustained without fistula leaking). L-NAME aggravated the healing failure of colocutaneous fistulas, skin, and colon wounds (L-NAME groups). L-Arginine was effective only with blunted NO generation (L-NAME + L-arginine groups) but not without (L-arginine groups). All of the BPC 157 beneficial effects remained unchanged with blunted NO-generation (L-NAME + BPC 157 groups) and with NO substrate (L-arginine + BPC 157 groups) as well as L-NAME and L-arginine co-administration (L-NAME + L-arginine + BPC 157 groups). Sulphasalazine was only moderately effective, and corticosteroid even had an aggravating effect.


Subject(s)
Anti-Ulcer Agents/therapeutic use , Colonic Diseases/drug therapy , Cutaneous Fistula/drug therapy , Inflammatory Bowel Diseases/drug therapy , Nitric Oxide/physiology , Peptide Fragments/therapeutic use , Proteins/therapeutic use , Anesthesia , Animals , Arginine/pharmacology , Enzyme Inhibitors/pharmacology , Male , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide/biosynthesis , Nitric Oxide Synthase/antagonists & inhibitors , Rats , Rats, Wistar
15.
J Pharmacol Sci ; 104(1): 7-18, 2007 May.
Article in English | MEDLINE | ID: mdl-17452811

ABSTRACT

Seven or fourteen days or twelve months after suturing one tube into the pyloric sphincter (removed by peristalsis by the seventh day), rats exhibit prolonged esophagitis with a constantly lowered pressure not only in the pyloric, but also in the lower esophageal sphincter and a failure of both sphincters. Throughout the esophagitis experiment, gastric pentadecapeptide BPC 157 (PL 14736) is given intraperitoneally once a day (10 microg/kg, 10 ng/kg, last application 24 h before assessment), or continuously in drinking water at 0.16 microg/ml, 0.16 ng/ml (12 ml/rat per day), or directly into the stomach 5 min before pressure assessment (a water manometer connected to the drainage port of a Foley catheter implanted into the stomach either through an esophageal or duodenal incision). This treatment alleviates i) the esophagitis (macroscopically and microscopically, at either region or interval), ii) the pressure in the pyloric sphincter, and iii) the pressure in the lower esophageal sphincter (cmH2O). In the normal rats it increases lower esophageal sphincter pressure, but decreases the pyloric sphincter pressure. Ranitidine, given using the same protocol (50 mg/kg, intraperitoneally, once daily; 0.83 mg/ml in drinking water; 50 mg/kg directly into the stomach) does not have an effect in either rats with esophagitis or in normal rats.


Subject(s)
Esophagitis/drug therapy , Peptide Fragments/therapeutic use , Proteins/therapeutic use , Pylorus/drug effects , Animals , Anti-Ulcer Agents/administration & dosage , Anti-Ulcer Agents/therapeutic use , Disease Models, Animal , Esophageal Sphincter, Lower/drug effects , Esophageal Sphincter, Lower/injuries , Esophageal Sphincter, Lower/physiopathology , Esophagitis/etiology , Esophagitis/physiopathology , Female , Histamine H2 Antagonists/administration & dosage , Histamine H2 Antagonists/therapeutic use , Injections, Intraperitoneal , Intubation, Gastrointestinal , Muscle Tonus/drug effects , Peptide Fragments/administration & dosage , Proteins/administration & dosage , Pylorus/injuries , Pylorus/physiopathology , Ranitidine/administration & dosage , Ranitidine/therapeutic use , Rats , Rats, Wistar , Time Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL