Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Magn Reson ; 365: 107709, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38991265

ABSTRACT

Sensitivity is the foundation of every NMR experiment, and the signal-to-noise ratio (SNR) should increase with static (B0) magnetic field, by a proportionality that primarily depends on the design of the NMR probe and receiver. In the low B0 field limit, where the coil geometry is much smaller than the wavelength of the NMR frequency, SNR can increase in proportion to B0 to the power 7/4. For modern magic-angle spinning (MAS) probes, this approximation holds for rotor sizes up to 3.2 mm at 14.1 Tesla (T), corresponding to 600 MHz 1H and 151 MHz 13C Larmor frequencies. To obtain the anticipated benefit of larger coils and/or higher B0 fields requires a quantitative understanding of the contributions to SNR, utilizing standard samples and protocols that reproduce SNR measurements with high accuracy and precision. Here, we present such a systematic and comprehensive study of 13C SNR under MAS over the range of 14.1 to 21.1 T. We evaluate a range of probe designs utilizing 1.6, 2.5 and 3.2 mm rotors, including 24 different sets of measurements on 17 probe configurations using five spectrometers. We utilize N-acetyl valine as the primary standard and compare and contrast with other commonly used standard samples (adamantane, glycine, hexamethylbenzene, and 3-methylglutaric acid). These robust approaches and standard operating procedures provide an improved understanding of the contributions from probe efficiency, receiver noise figure, and B0 dependence in a range of custom-designed and commercially available probes. We find that the optimal raw SNR is obtained with balanced 3.2 mm design at 17.6 T, that the best mass-limited SNR is achieved with a balanced 1.6 mm design at 21.1 T, and that the raw SNR at 21.1 T reaches diminishing returns with rotors larger than 2.5 mm.

SELECTION OF CITATIONS
SEARCH DETAIL