Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Death Dis ; 15(1): 53, 2024 01 15.
Article in English | MEDLINE | ID: mdl-38225221

ABSTRACT

Chronic metabolic stress paradoxically elicits pro-tumorigenic signals that facilitate cancer stem cell (CSC) development. Therefore, elucidating the metabolic sensing and signaling mechanisms governing cancer cell stemness can provide insights into ameliorating cancer relapse and therapeutic resistance. Here, we provide convincing evidence that chronic metabolic stress triggered by hyaluronan production augments CSC-like traits and chemoresistance by partially impairing nucleotide sugar metabolism, dolichol lipid-linked oligosaccharide (LLO) biosynthesis and N-glycan assembly. Notably, preconditioning with either low-dose tunicamycin or 2-deoxy-D-glucose, which partially interferes with LLO biosynthesis, reproduced the promoting effects of hyaluronan production on CSCs. Multi-omics revealed characteristic changes in N-glycan profiles and Notch signaling activation in cancer cells exposed to mild glycometabolic stress. Restoration of N-glycan assembly with glucosamine and mannose supplementation and Notch signaling blockade attenuated CSC-like properties and further enhanced the therapeutic efficacy of cisplatin. Therefore, our findings uncover a novel mechanism by which tolerable glycometabolic stress boosts cancer cell resilience through altered N-glycosylation and Notch signaling activation.


Subject(s)
Hyaluronic Acid , Resilience, Psychological , Humans , Glycosylation , Hyaluronic Acid/metabolism , Neoplasm Recurrence, Local/metabolism , Polysaccharides/metabolism , Dietary Supplements , Neoplastic Stem Cells/metabolism
2.
J Biol Chem ; 299(8): 104971, 2023 08.
Article in English | MEDLINE | ID: mdl-37380081

ABSTRACT

The expression of trophoblast cell surface antigen-2 (Trop-2) is enhanced in many tumor tissues and is correlated with increased malignancy and poor survival of patients with cancer. Previously, we demonstrated that the Ser-322 residue of Trop-2 is phosphorylated by protein kinase Cα (PKCα) and PKCδ. Here, we demonstrate that phosphomimetic Trop-2 expressing cells have markedly decreased E-cadherin mRNA and protein levels. Consistently, mRNA and protein of the E-cadherin-repressing transcription factors zinc finger E-Box binding homeobox 1 (ZEB1) were elevated, suggesting transcriptional regulation of E-cadherin expression. The binding of galectin-3 to Trop-2 enhanced the phosphorylation and subsequent cleavage of Trop-2, followed by intracellular signaling by the resultant C-terminal fragment. Binding of ß-catenin/transcription factor 4 (TCF4) along with the C-terminal fragment of Trop-2 to the ZEB1 promoter upregulated ZEB1 expression. Of note, siRNA-mediated knockdown of ß-catenin and TCF4 increased the expression of E-cadherin through ZEB1 downregulation. Knockdown of Trop-2 in MCF-7 cells and DU145 cells resulted in downregulation of ZEB1 and subsequent upregulation of E-cadherin. Furthermore, wild-type and phosphomimetic Trop-2 but not phosphorylation-blocked Trop-2 were detected in the liver and/or lung of some nude mice bearing primary tumors inoculated intraperitoneally or subcutaneously with wild-type or mutated Trop-2 expressing cells, suggesting that Trop-2 phosphorylation, plays an important role in tumor cell mobility in vivo, too. Together with our previous finding of Trop-2 dependent regulation of claudin-7, we suggest that the Trop-2-mediated cascade involves concurrent derangement of both tight and adherence junctions, which may drive metastasis of epithelial tumor cells.


Subject(s)
Galectin 3 , beta Catenin , Animals , Humans , Mice , beta Catenin/genetics , beta Catenin/metabolism , Cadherins/genetics , Cadherins/metabolism , Cell Line, Tumor , Down-Regulation , Epithelial-Mesenchymal Transition/genetics , Galectin 3/genetics , Galectin 3/metabolism , Gene Expression Regulation, Neoplastic , MCF-7 Cells , Mice, Nude , RNA, Messenger/genetics , Trophoblasts/metabolism , Zinc Finger E-box-Binding Homeobox 1/metabolism
3.
Biochim Biophys Acta Gen Subj ; 1867(1): 130250, 2023 01.
Article in English | MEDLINE | ID: mdl-36228878

ABSTRACT

Metabolite sensing, a fundamental biological process, plays a key role in metabolic signaling circuit rewiring. Hexosamine biosynthetic pathway (HBP) is a glucose metabolic pathway essential for the synthesis of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), which senses key nutrients and integrally maintains cellular homeostasis. UDP-GlcNAc dynamically regulates protein N-glycosylation and O-linked-N-acetylglucosamine modification (O-GlcNAcylation). Dysregulated HBP flux leads to abnormal protein glycosylation, and contributes to cancer development and progression by affecting protein function and cellular signaling. Furthermore, O-GlcNAcylation regulates cellular signaling pathways, and its alteration is linked to various cancer characteristics. Additionally, recent findings have suggested a close association between HBP stimulation and cancer stemness; an elevated HBP flux promotes cancer cell conversion to cancer stem cells and enhances chemotherapy resistance via downstream signal activation. In this review, we highlight the prominent roles of HBP in metabolic signaling and summarize the recent advances in HBP and its downstream signaling, relevant to cancer.


Subject(s)
Biological Phenomena , Neoplasms , Humans , Hexosamines/metabolism , Biosynthetic Pathways , Acetylglucosamine/metabolism , Neoplasms/metabolism , Uridine Diphosphate
4.
J Biol Chem ; 294(30): 11513-11524, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31177095

ABSTRACT

Dysfunction of tight junctions is a critical step during the initial stage of tumor progression. Trophoblast cell surface antigen 2 (Trop-2) belongs to the family of tumor-associated calcium signal transducer (TACSTD) and is required for the stability of claudin-7 and claudin-1, which are often dysregulated or lost in carcinogenesis. Here, we investigated the effects of Trop-2 phosphorylation on cell motility. Analyses using HCT116 cells expressing WT Trop-2 (HCT116/WT) or Trop-2 alanine-substituted at Ser-303 (HCT116/S303A) or Ser-322 (HCT116/S322A) revealed that Trop-2 is phosphorylated at Ser-322. Furthermore, coimmunoprecipitation and Transwell assays indicated that Trop-2 S322A interacted with claudin-7 the strongest, and a phosphomimetic variant, Trop-2 S322E, the weakest and that HCT116/S322E cells have the highest motility and HCT116/S322A cells the lowest. All cell lines had similar levels of claudin-7 mRNA, but levels of claudin-7 protein were markedly decreased in the HCT116/S322E cells, suggesting posttranscriptional control of claudin-7. Moreover, claudin-7 was clearly localized to cell-cell borders in HCT116/S322A cells but was diffusely distributed on the membrane and partially localized in the cytoplasm of HCT116/S322E and HCT116/WT cells. These observations suggested that Trop-2 phosphorylation plays a role in the decrease or mislocalization of claudin-7. Using protein kinase C (PKC) inhibitors and PKC-specific siRNAs, we found that PKCα and PKCδ are responsible for Trop-2 phosphorylation. Of note, chemical PKC inhibition and PKCα- and PKCδ-specific siRNAs reduced motility. In summary, our findings provide evidence that Trop-2 is phosphorylated at Ser-322 by PKCα/δ and that this phosphorylation enhances cell motility and decreases claudin-7 localization to cellular borders.


Subject(s)
Antigens, Neoplasm/metabolism , Cell Adhesion Molecules/metabolism , Cell Movement , Protein Kinase C-alpha/metabolism , Protein Kinase C-delta/metabolism , Claudins/genetics , Claudins/metabolism , HCT116 Cells , Humans , Phosphorylation , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL