Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
J Allergy Clin Immunol Glob ; 3(3): 100287, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39040657

ABSTRACT

Background: Massive eosinophil infiltration into the esophagus is associated with subepithelial fibrosis and esophageal stricture in patients with eosinophilic esophagitis (EoE). However, the pathogenesis of esophageal fibrosis remains unclear. Objective: We sought to elucidate the cellular and molecular mechanisms underlying the induction of esophageal fibrosis. Methods: We established a murine model of EoE accompanied by fibrotic responses following long-term intranasal administration of house dust mite antigen. Using this murine model, we investigated the characteristics of immune cells infiltrating the fibrotic region of the inflamed esophagus using flow cytometry and histological analyses. We also analyzed the local inflammatory sites in the esophagus of patients with EoE using single-cell RNA sequencing, flow cytometry, and immunohistochemistry. Results: Enhanced infiltration of both amphiregulin-producing and IL-5-producing TH2 cells was detected in the fibrotic area of the esophagus in mice subjected to repeated house dust mite exposure. Deletion of amphiregulin in CD4+ T cells ameliorates esophageal fibrosis. An analysis of human esophageal biopsy samples showed that the infiltration of amphiregulin-producing CD4+ T cells was higher in patients with EoE than in control patients. Furthermore, the number of infiltrated amphiregulin-producing CD4+ T cells was associated with the degree of esophageal fibrosis in patients with EoE. Conclusions: Amphiregulin, produced by TH2 cells, contributes to esophageal fibrosis in EoE and may be a therapeutic target.

2.
J Clin Immunol ; 44(4): 104, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647550

ABSTRACT

PURPOSE: Auto-antibodies (auto-abs) to type I interferons (IFNs) have been identified in patients with life-threatening coronavirus disease 2019 (COVID-19), suggesting that the presence of auto-abs may be a risk factor for disease severity. We therefore investigated the mechanism underlying COVID-19 exacerbation induced by auto-abs to type I IFNs. METHODS: We evaluated plasma from 123 patients with COVID-19 to measure auto-abs to type I IFNs. We performed single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells from the patients with auto-abs and conducted epitope mapping of the auto-abs. RESULTS: Three of 19 severe and 4 of 42 critical COVID-19 patients had neutralizing auto-abs to type I IFNs. Patients with auto-abs to type I IFNs showed no characteristic clinical features. scRNA-seq from 38 patients with COVID-19 revealed that IFN signaling in conventional dendritic cells and canonical monocytes was attenuated, and SARS-CoV-2-specific BCR repertoires were decreased in patients with auto-abs. Furthermore, auto-abs to IFN-α2 from COVID-19 patients with auto-abs recognized characteristic epitopes of IFN-α2, which binds to the receptor. CONCLUSION: Auto-abs to type I IFN found in COVID-19 patients inhibited IFN signaling in dendritic cells and monocytes by blocking the binding of type I IFN to its receptor. The failure to properly induce production of an antibody to SARS-CoV-2 may be a causative factor of COVID-19 severity.


Subject(s)
Autoantibodies , COVID-19 , Interferon Type I , Myeloid Cells , Female , Humans , Male , Autoantibodies/immunology , Autoantibodies/blood , COVID-19/immunology , Dendritic Cells/immunology , Interferon Type I/immunology , Interferon Type I/metabolism , Myeloid Cells/immunology , SARS-CoV-2/immunology , Severity of Illness Index , Signal Transduction/immunology
3.
Nat Immunol ; 24(12): 2080-2090, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37957354

ABSTRACT

Aberrant differentiation of progenitor cells in the hematopoietic system is known to severely impact host immune responsiveness. Here we demonstrate that NOD1, a cytosolic innate sensor of bacterial peptidoglycan, also functions in murine hematopoietic cells as a major regulator of both the generation and differentiation of lymphoid progenitors as well as peripheral T lymphocyte homeostasis. We further show that NOD1 mediates these functions by facilitating STAT5 signaling downstream of hematopoietic cytokines. In steady-state, loss of NOD1 resulted in a modest but significant decrease in numbers of mature T, B and natural killer cells. During systemic protozoan infection this defect was markedly enhanced, leading to host mortality. Lack of functional NOD1 also impaired T cell-dependent anti-tumor immunity while preventing colitis. These findings reveal that, in addition to its classical role as a bacterial ligand receptor, NOD1 plays an important function in regulating adaptive immunity through interaction with a major host cytokine signaling pathway.


Subject(s)
Immunity, Innate , Lymphopoiesis , Animals , Mice , Colitis , Ligands , Signal Transduction
4.
Pharmacol Ther ; 247: 108445, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37201737

ABSTRACT

Allergic diseases arise from a complex interplay between immune system and environmental factors. A link between the pathogenesis of allergic diseases and type 2 immune responses has become evident, with conventional and pathogenic type 2 helper T (Th2) cells involved in both. Recently, there has been a significant development in therapeutic agents for allergic diseases: IL-5 and IL-5 receptor antagonists, Janus kinase (JAK) inhibitors, and sublingual immunotherapy (SLIT). Mepolizumab, an IL-5, and Benralizumab, an IL-5 receptor antagonist, modulate eosinophilic inflammation mediated by IL-5-producing Th2 cells. Delgocitinib shows that JAK-associated signaling is essential for the inflammatory reaction in atopic dermatitis, one of the common allergic diseases. SLIT has a significant effect on allergic rhinitis by reducing pathogenic Th2 cell numbers. More recently, novel molecules that are involved in pathogenic Th2 cell-mediated allergic diseases have been identified. These include calcitonin gene-related peptide (CGRP), reactive oxygen species (ROS) scavenging machinery regulated by the Txnip-Nrf2-Blvrb axis, and myosin light chain 9 (Myl9), which interacts with CD69. This review provides an updated view of the recent research on treatment of allergic diseases and their cause: conventional and pathogenic Th2 cells.


Subject(s)
Dermatitis, Atopic , Hypersensitivity , Humans , Cytokines , Interleukin-5/therapeutic use , Hypersensitivity/drug therapy , Th2 Cells
5.
Proc Natl Acad Sci U S A ; 120(2): e2218345120, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36595680

ABSTRACT

CD4+ memory T cells are central to long-lasting protective immunity and are involved in shaping the pathophysiology of chronic inflammation. While metabolic reprogramming is critical for the generation of memory T cells, the mechanisms controlling the redox metabolism in memory T cell formation remain unclear. We found that reactive oxygen species (ROS) metabolism changed dramatically in T helper-2 (Th2) cells during the contraction phase in the process of memory T cell formation. Thioredoxin-interacting protein (Txnip), a regulator of oxidoreductase, regulated apoptosis by scavenging ROS via the nuclear factor erythroid 2-related factor 2 (Nrf2)-biliverdin reductase B (Blvrb) pathway. Txnip regulated the pathology of chronic airway inflammation in the lung by controlling the generation of allergen-specific pathogenic memory Th2 cells in vivo. Thus, the Txnip-Nrf2-Blvrb axis directs ROS metabolic reprogramming in Th2 cells and is a potential therapeutic target for intractable chronic inflammatory diseases.


Subject(s)
Memory T Cells , NF-E2-Related Factor 2 , Humans , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidation-Reduction , Inflammation , Thioredoxins/genetics , Thioredoxins/metabolism
6.
Immunity ; 55(12): 2352-2368.e7, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36272417

ABSTRACT

Allergic conjunctivitis is a chronic inflammatory disease that is characterized by severe itch in the conjunctiva, but how neuro-immune interactions shape the pathogenesis of severe itch remains unclear. We identified a subset of memory-type pathogenic Th2 cells that preferentially expressed Il1rl1-encoding ST2 and Calca-encoding calcitonin-gene-related peptide (CGRP) in the inflammatory conjunctiva using a single-cell analysis. The IL-33-ST2 axis in memory Th2 cells controlled the axonal elongation of the peripheral sensory C-fiber and the induction of severe itch. Pharmacological blockade and genetic deletion of CGRP signaling in vivo attenuated scratching behavior. The analysis of giant papillae from patients with severe allergic conjunctivitis revealed ectopic lymphoid structure formation with the accumulation of IL-33-producing epithelial cells and CGRP-producing pathogenic CD4+ T cells accompanied by peripheral nerve elongation. Thus, the IL-33-ST2-CGRP axis directs severe itch with neuro-reconstruction in the inflammatory conjunctiva and is a potential therapeutic target for severe itch in allergic conjunctivitis.


Subject(s)
Conjunctivitis, Allergic , Neuropeptides , Humans , Interleukin-33/genetics , Interleukin-1 Receptor-Like 1 Protein/genetics , Calcitonin Gene-Related Peptide , Conjunctivitis, Allergic/pathology , Th2 Cells , Calcitonin , Pruritus/pathology , Conjunctiva/pathology , Neurons
7.
Proc Natl Acad Sci U S A ; 119(33): e2203437119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35895716

ABSTRACT

The mortality of coronavirus disease 2019 (COVID-19) is strongly correlated with pulmonary vascular pathology accompanied by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection-triggered immune dysregulation and aberrant activation of platelets. We combined histological analyses using field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy analyses of the lungs from autopsy samples and single-cell RNA sequencing of peripheral blood mononuclear cells to investigate the pathogenesis of vasculitis and immunothrombosis in COVID-19. We found that SARS-CoV-2 accumulated in the pulmonary vessels, causing exudative vasculitis accompanied by the emergence of thrombospondin-1-expressing noncanonical monocytes and the formation of myosin light chain 9 (Myl9)-containing microthrombi in the lung of COVID-19 patients with fatal disease. The amount of plasma Myl9 in COVID-19 was correlated with the clinical severity, and measuring plasma Myl9 together with other markers allowed us to predict the severity of the disease more accurately. This study provides detailed insight into the pathogenesis of vasculitis and immunothrombosis, which may lead to optimal medical treatment for COVID-19.


Subject(s)
COVID-19 , Lung , Myosin Light Chains , SARS-CoV-2 , Severity of Illness Index , Thromboinflammation , Vasculitis , COVID-19/blood , COVID-19/complications , COVID-19/pathology , Humans , Leukocytes, Mononuclear , Lung/blood supply , Lung/metabolism , Lung/pathology , Lung/virology , Myosin Light Chains/blood , RNA-Seq , SARS-CoV-2/isolation & purification , Single-Cell Analysis , Spectrometry, X-Ray Emission , Thromboinflammation/pathology , Thromboinflammation/virology , Vasculitis/pathology , Vasculitis/virology
8.
Sci Rep ; 12(1): 9046, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35641585

ABSTRACT

In bronchial asthma patients, mucous cell metaplasia (MCM) and fibrosis occur in the bronchial epithelium and interstitium, respectively. The mucus and collagen fibers are identified by Periodic acid-Schiff stain (PAS) or Sirius red stain on optical microscopy. On a scanning electron microscope (SEM) observation, formalin-fixed-paraffin-embedded specimens have high insulation, thereby attenuating the scattered electron signals leading to insufficient contrast. Moreover, there were no staining methods for SEM observation, which characterizes the changes in epithelium and interstitium by enhancing the scattered electrons. In this study, we established a method of coating osmium thin film on pathological tissue specimens using plasma chemical vapor deposition technology. This method ensured the intensity of scattered electron signals and enabled SEM observation. Furthermore, we found that morphological changes in MCM and interstitial fibrosis could be characterized by Grocott stain, which we optimized to evaluate pathological remodeling in bronchial asthma. Using these techniques, we compared asthma-induced mice with Amphiregulin (Areg) knockout mice, and found that Areg induce MCM, but the production of Grocott-stain-positive substrate in the interstitium is Areg-independent. The method developed in this study provides an understanding of the pathological spatial information linked to the ultrastructural changes in cells and interstitium due to disease-related signaling abnormalities.


Subject(s)
Asthma , Animals , Asthma/pathology , Coloring Agents , Fibrosis , Humans , Mice , Microscopy, Electron, Scanning , Paraffin Embedding , Staining and Labeling
10.
Int Immunol ; 33(12): 699-704, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34427648

ABSTRACT

CD4+ T cells not only direct immune responses against infectious micro-organisms but are also involved in the pathogenesis of inflammatory diseases. In the last two to three decades, various researchers have identified and characterized several functional CD4+ T-cell subsets, including T-helper 1 (Th1), Th2, Th9 and Th17 cells and regulatory T (Treg) cells. In this mini-review, we introduce the concept of pathogenic Th cells that induce inflammatory diseases with a model of disease induction by a population of pathogenic Th cells: the 'pathogenic Th population disease-induction model'. We will focus on Th2 cells that induce allergic airway inflammation-pathogenic Th2 cells (Tpath2 cells)-and discuss the nature of Tpath2 cells that shape the pathology of chronic inflammatory diseases. Various Tpath2-cell subsets have been identified and their unique features are summarized in mouse and human systems. Second, we will discuss how Th cells migrate and are maintained in chronic inflammatory lesions. We propose a model known as the 'CD69-Myl9 system'. CD69 is a cell surface molecule expressed on activated T cells and interaction with its ligand myosin light chain 9 (Myl9) is required for the induction of inflammatory diseases. Myl9 molecules in the small vessels of inflamed lungs may play a crucial role in the migration of activated T cells into inflammatory lesions. Emerging evidence may provide new insight into the pathogenesis of chronic inflammatory diseases and contribute to the development of new therapeutic strategies for intractable inflammatory disorders.


Subject(s)
Antigens, CD/immunology , Antigens, Differentiation, T-Lymphocyte/immunology , CD4-Positive T-Lymphocytes/immunology , Inflammation/immunology , Lectins, C-Type/immunology , Myosin Light Chains/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Humans
11.
Front Immunol ; 11: 1536, 2020.
Article in English | MEDLINE | ID: mdl-32793209

ABSTRACT

Memory helper T (Th) cells are crucial for secondary immune responses against infectious microorganisms but also drive the pathogenesis of chronic inflammatory diseases. Therefore, it is of fundamental importance to understand how memory T cells are generated. However, the molecular mechanisms governing memory Th cell generation remain incompletely understood. Here, we identified CD30 as a molecule heterogeneously expressed on effector Th1 and Th17 cells, and CD30hi effector Th1 and Th17 cells preferentially generated memory Th1 and Th17 cells. We found that CD30 mediated signal induced Transglutaminase-2 (TG2) expression, and that the TG2 expression in effector Th cells is essential for memory Th cell generation. In fact, Cd30-deficiency resulted in the impaired generation of memory Th1 and Th17 cells, which can be rescued by overexpression of TG2. Furthermore, transglutaminase-2 (Tgm2)-deficient CD4 T cells failed to become memory Th cells. As a result, T cells from Tgm2-deficient mice displayed impaired antigen-specific antibody production and attenuated Th17-mediated allergic responses. Our data indicate that CD30-induced TG2 expression in effector Th cells is essential for the generation of memory Th1 and Th17 cells, and that CD30 can be a marker for precursors of memory Th1 and Th17 cells.


Subject(s)
GTP-Binding Proteins/metabolism , Immunologic Memory , Ki-1 Antigen/metabolism , Th1 Cells/immunology , Th1 Cells/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Transglutaminases/metabolism , Adoptive Transfer , Animals , Cell Differentiation/immunology , Immunophenotyping , Mice , Mice, Transgenic , Protein Glutamine gamma Glutamyltransferase 2 , Signal Transduction , Th1 Cells/cytology , Th17 Cells/cytology
12.
Front Immunol ; 9: 1942, 2018.
Article in English | MEDLINE | ID: mdl-30210497

ABSTRACT

Innate T lymphocytes are a group of relatively recently identified T cells that are not involved in either innate or adaptive immunity. Unlike conventional T cells, most innate T lymphocytes express invariant T cell receptor to recognize exogenous non-peptide antigens presented by a family of non-polymorphic MHC class I-related molecules, such as CD1d and MHC-related molecule-1 (MR1). Invariant natural killer T (iNKT) cells and mucosal-associated invariant T (MAIT) cells quickly respond to the antigens bound to CD1d and MR1 molecules, respectively, and immediately exert effector functions by secreting various cytokines and granules. This review describes the detrimental and beneficial roles of iNKT cells in animal models of asthma and in human asthmatic patients and also addresses the mechanisms through which iNKT cells are activated by environmental or extracellular factors. We also discuss the potential for therapeutic interventions of asthma by specific antibodies against NKT cells. Furthermore, we summarize the recent reports on the role of MAIT cells in allergic diseases.


Subject(s)
Antigens, CD1d/immunology , Asthma/immunology , Histocompatibility Antigens Class I/immunology , Minor Histocompatibility Antigens/immunology , Mucosal-Associated Invariant T Cells/immunology , Natural Killer T-Cells/immunology , Animals , Asthma/pathology , Humans , Mucosal-Associated Invariant T Cells/pathology , Natural Killer T-Cells/pathology , Receptors, Antigen, T-Cell/immunology
13.
Blood ; 129(2): 171-176, 2017 01 12.
Article in English | MEDLINE | ID: mdl-27799160

ABSTRACT

The microbiota is known to influence the generation of hematopoietic progenitors, although the pathways underlying this process are still poorly understood. NOD1 and NOD2 are intracellular sensors for both Gram-positive and Gram-negative bacteria, but their role in steady-state hematopoiesis has never been characterized. We observed that stimulation with NOD1 or NOD2 ligand had no effect on the survival/proliferation of hematopoietic precursors. Nonetheless, NOD1, but not NOD2, ligand induced expression of multiple hematopoietic cytokines (interleukin-7 [IL-7], Flt3L, stem cell factor [SCF], ThPO, and IL-6) from bone marrow mesenchymal stromal cells (MSCs) in vitro. Moreover, in vivo administration of NOD1 ligand to germ-free mice restored the numbers of hematopoietic stem cells and precursors in bone marrow as well as serum concentrations of IL-7, Flt3L, SCF, and ThPO to the levels displayed by specific pathogen-free control animals. Based on these findings, we propose that NOD1 signaling in MSCs serves as an important pathway underlying the requirement for microbiota in the maintenance of steady-state hematopoiesis. This function is distinct from that triggered by lipopolysaccharide in both its broad effects on multiple progenitors and specific targeting of MSCs as cytokine producing intermediates.


Subject(s)
Hematopoiesis/physiology , Mesenchymal Stem Cells/metabolism , Microbiota , Nod1 Signaling Adaptor Protein/metabolism , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cell Separation , Cells, Cultured , Flow Cytometry , Germ-Free Life , Mesenchymal Stem Cells/cytology , Mice , Mice, Inbred C57BL , Mice, Knockout , Polymerase Chain Reaction
14.
Sci Immunol ; 1(3): eaaf9154, 2016 Sep 16.
Article in English | MEDLINE | ID: mdl-28783682

ABSTRACT

Recent decades have witnessed a rapid worldwide increase in chronic inflammatory disorders such as asthma. CD4+ T helper 2 cells play critical roles in the pathogenesis of allergic airway inflammation, and CD69 expression on activated CD4 T cells is required to induce allergic inflammation in tissues. However, how CD69 mechanistically controls allergic inflammation remains poorly defined. In lymphoid tissues, CD69 regulates cellular retention through inhibition of S1P1 expression and requires no specific ligands to function. In contrast, we show herein that myosin light chain (Myl) 9 and Myl12 are new functional ligands for CD69. Blockade of CD69-Myl9/12 interaction ameliorates allergic airway inflammation in ovalbumin-induced and house dust mite-induced mouse models of asthma. Within the inflamed mouse airways, we found that the expression of Myl9/12 was increased and that platelet-derived Myl9/12 localized to the luminal surface of blood vessels and formed intravascular net-like structures. Analysis of nasal polyps of eosinophilic chronic rhinosinusitis patients revealed that Myl9/12 expression was increased in inflammatory lesions and was distributed within net-like structures in the intravascular space. In addition, we detected Myl9/12 in perivascular spaces where many CD69+ cells were positioned within Myl9/12 structures. Thus, CD69-Myl9/12 interaction is a key event in the recruitment of activated CD69+ T cells to inflamed tissues and could be a therapeutic target for intractable airway inflammatory diseases.

15.
Proc Natl Acad Sci U S A ; 111(35): 12829-34, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-25136117

ABSTRACT

Epigenetic modifications, such as posttranslational modifications of histones, play an important role in gene expression and regulation. These modifications are in part mediated by the Trithorax group (TrxG) complex and the Polycomb group (PcG) complex, which activate and repress transcription, respectively. We herein investigate the role of Menin, a component of the TrxG complex in T helper (Th) cell differentiation and show a critical role for Menin in differentiation and maintenance of Th17 cells. Menin(-/-) T cells do not efficiently differentiate into Th17 cells, leaving Th1 and Th2 cell differentiation intact in in vitro cultures. Menin deficiency resulted in the attenuation of Th17-induced airway inflammation. In differentiating Th17 cells, Menin directly bound to the Il17a gene locus and was required for the deposition of permissive histone modifications and recruitment of the RNA polymerase II transcriptional complex. Interestingly, although Menin bound to the Rorc locus, Menin was dispensable for the induction of Rorc expression and permissive histone modifications in differentiating Th17 cells. In contrast, Menin was required to maintain expression of Rorc in differentiated Th17 cells, indicating that Menin is essential to stabilize expression of the Rorc gene. Thus, Menin orchestrates Th17 cell differentiation and function by regulating both the induction and maintenance of target gene expression.


Subject(s)
Asthma/immunology , Epigenesis, Genetic/immunology , Interleukin-17/immunology , Proto-Oncogene Proteins/immunology , Th17 Cells/immunology , Animals , Cell Differentiation/genetics , Cell Differentiation/immunology , Chromatin/immunology , Chromatin/metabolism , Epigenesis, Genetic/genetics , Gene Expression Regulation/immunology , Histone-Lysine N-Methyltransferase/immunology , Histone-Lysine N-Methyltransferase/metabolism , Interleukin-17/genetics , Interleukin-17/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Myeloid-Lymphoid Leukemia Protein/immunology , Myeloid-Lymphoid Leukemia Protein/metabolism , Neutrophils/drug effects , Neutrophils/immunology , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Ovalbumin/immunology , Ovalbumin/pharmacology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , RNA Polymerase II/immunology , RNA Polymerase II/metabolism , Th17 Cells/metabolism
16.
Exp Lung Res ; 40(1): 1-11, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24246030

ABSTRACT

Mechanical ventilation (MV) is well known to potentially cause ventilator-associated lung injury (VALI). It has also been reported recently that activation of invariant natural killer T (iNKT) cells is involved in the onset/progression of airway inflammation. We analyzed the roles of inflammatory cells, including iNKT cells, and cytokines/chemokines in a mouse model of VALI. C57BL/6 and Vα14(+)NKT cell-deficient (Jα18KO) female mice were subjected to MV for 5 hours. The MV induced lung injury in the mice, with severe histological abnormalities, elevation in the percentages of neutrophils in the bronchoalveolar lavage fluid (BALF), and increase in the number of iNKT cells in the lung. Jα18KO mice subjected to MV for 5 hours also showed lung injury, with decrease of the PaO2/FiO2 ratio (P/F ratio) and elevation of the levels of total protein, IL-5, IL-6, IL-12p40, and keratinocyte-derived cytokine (KC) in the BALF. Intranasal administration of anti-IL-5 monoclonal antibody (mAb) or anti-IL-6 receptor (IL-6R) mAb into the Jα18KO mice prior to the start of MV resulted in significant improvement in the blood oxygenation. In addition, the anti-IL-5 mAb administration was associated with a decrease in the levels of IL-5, IL-9, and IL-6R in the BALF, and anti-IL-6R mAb administration suppressed the mRNA expressions of IL-5, IL-6, IL-6R, and KC. These results suggest that iNKT cells may play a role in attenuating the inflammatory caused by ventilation through IL-5 and IL-6R.


Subject(s)
Interleukin-5/metabolism , Lung Injury/metabolism , Natural Killer T-Cells/metabolism , Receptors, Interleukin-6/metabolism , Animals , Bronchoalveolar Lavage Fluid , Disease Models, Animal , Female , Inflammation/metabolism , Lung/metabolism , Mice , Mice, Inbred C57BL , Neutrophils/metabolism , Ventilators, Mechanical
17.
Immunity ; 39(5): 819-32, 2013 Nov 14.
Article in English | MEDLINE | ID: mdl-24238339

ABSTRACT

After antigen encounter by CD4(+) T cells, polarizing cytokines induce the expression of master regulators that control differentiation. Inactivation of the histone methyltransferase Ezh2 was found to specifically enhance T helper 1 (Th1) and Th2 cell differentiation and plasticity. Ezh2 directly bound and facilitated correct expression of Tbx21 and Gata3 in differentiating Th1 and Th2 cells, accompanied by substantial trimethylation at lysine 27 of histone 3 (H3K27me3). In addition, Ezh2 deficiency resulted in spontaneous generation of discrete IFN-γ and Th2 cytokine-producing populations in nonpolarizing cultures, and under these conditions IFN-γ expression was largely dependent on enhanced expression of the transcription factor Eomesodermin. In vivo, loss of Ezh2 caused increased pathology in a model of allergic asthma and resulted in progressive accumulation of memory phenotype Th2 cells. This study establishes a functional link between Ezh2 and transcriptional regulation of lineage-specifying genes in terminally differentiated CD4(+) T cells.


Subject(s)
Gene Expression Regulation , Histone-Lysine N-Methyltransferase/physiology , Polycomb Repressive Complex 2/physiology , T-Lymphocyte Subsets/cytology , Th1 Cells/cytology , Th2 Cells/cytology , Animals , Asthma/genetics , Asthma/immunology , Asthma/pathology , Cell Differentiation , Cells, Cultured/cytology , Cells, Cultured/immunology , Cells, Cultured/metabolism , Enhancer of Zeste Homolog 2 Protein , Female , GATA3 Transcription Factor/metabolism , Histone Methyltransferases , Histone-Lysine N-Methyltransferase/chemistry , Histone-Lysine N-Methyltransferase/deficiency , Histone-Lysine N-Methyltransferase/genetics , Histones/metabolism , Immunologic Memory , Interferon-gamma Release Tests , Lymphokines/biosynthesis , Lymphokines/genetics , Male , Methylation , Mice , Mice, Inbred C57BL , Polycomb Repressive Complex 2/chemistry , Polycomb Repressive Complex 2/deficiency , Polycomb Repressive Complex 2/genetics , Protein Processing, Post-Translational , Sequence Deletion , T-Box Domain Proteins/biosynthesis , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , T-Lymphocyte Subsets/immunology , Th1 Cells/immunology , Th2 Cells/immunology
18.
Microbiol Immunol ; 57(9): 640-50, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23829825

ABSTRACT

Myeloperoxidase-specific anti-neutrophil cytoplasmic antibody (MPO-ANCA) is associated with rapidly progressive glomerulonephritis (RPGN) and glomerular crescent formation. Pathogenic factors in RPGN were analyzed by using SCG/Kj mice, which spontaneously develop MPO-ANCA-associated RPGN. The serum concentration of soluble IL-6R was determined by using ELISA and those of another 23 cytokines and chemokines by Bio-Plex analysis. Sections of frozen kidney tissue were examined by fluorescence microscopy and the CD3(+) B220(+) T cell subset in the spleen determined by a flow cytometry. Concentrations of IL-6 and monocyte chemotactic protein-1 were significantly correlated with the percentages of crescent formation. Anti-IL-6R antibody, which has been effective in patients with rheumatoid arthritis, was administered to SCG/Kj mice to elucidate the role of IL-6 in the development of RPGN. MPO-ANCA titers decreased after administration of anti-IL-6R antibody, but not titers of mizoribine, which is effective in Kawasaki disease model mice. These results suggest that IL-6-mediated signaling is involved in the production of MPO-ANCA.


Subject(s)
Antibodies, Antineutrophil Cytoplasmic/immunology , Antibodies/administration & dosage , Chemokine CCL2/blood , Glomerulonephritis/drug therapy , Glomerulonephritis/immunology , Interleukin-6/blood , Peroxidase/immunology , Receptors, Interleukin-6/immunology , Ribonucleosides/administration & dosage , Animals , Disease Models, Animal , Female , Glomerulonephritis/blood , Humans , Mice , Mice, Inbred C57BL , T-Lymphocyte Subsets/immunology
19.
PLoS One ; 8(6): e65494, 2013.
Article in English | MEDLINE | ID: mdl-23785429

ABSTRACT

CD69 is a membrane molecule transiently expressed on activated lymphocytes, and its selective expression in inflammatory infiltrates suggests that it plays a role in the pathogenesis of inflammatory diseases. In this study, we used CD69-deficient (CD69 KO) mice to assess the role of CD69 in the pathogenesis of dextran sulphate sodium (DSS)-induced acute and chronic colitis. The severity of colitis was assessed by the survival rate, clinical signs, colon length, histological examination and the expression of cytokines and chemokines in the large intestines. Both acute and chronic colitis were attenuated in the CD69 KO mice, as reflected by the lower lethality, weight loss, clinical signs, and improved histological findings. CD69(+) cells infiltrated extensively into the inflamed mucosa of the colon in WT mice after DSS treatment. Experiments with the transfer of WT CD4 T cells into CD69 KO mice restored the induction of colitis. The administration of an anti-CD69 antibody also inhibited the induction of the DSS-induced colitis. These results indicate that CD69 expressed on CD4 T cells plays an important role in the pathogenesis of DSS-induced acute and chronic colitis, and that CD69 could be a possible therapeutic target for colitis.


Subject(s)
Antigens, CD/genetics , Antigens, Differentiation, T-Lymphocyte/genetics , Colitis/etiology , Lectins, C-Type/genetics , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/pharmacology , Chemokines/immunology , Chemokines/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/mortality , Colitis/pathology , Colon/immunology , Colon/metabolism , Colon/pathology , Cytokines/immunology , Cytokines/metabolism , Dextran Sulfate/adverse effects , Disease Models, Animal , Lectins, C-Type/antagonists & inhibitors , Lectins, C-Type/deficiency , Mice , Mice, Knockout , Receptors, Chemokine/genetics , Receptors, Chemokine/immunology , Receptors, Chemokine/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
20.
J Immunol ; 191(2): 949-60, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23772025

ABSTRACT

Crohn's disease (CD) is a chronic inflammatory disorder of the gastrointestinal tract, where excessive Th1 cell responses are observed. We performed experiments to identify immunologically bioactive proteins in human plasma and found that paraoxonase (PON)-1, which has esterase activity and is associated with high-density lipoproteins, inhibited the IFN-γ production by both murine and human differentiating Th1 cells. Trinitrobenzene sulfonic acid-induced colitis was attenuated by the administration of PON-1. The beneficial effects of PON-1 were associated with a reduced ratio of IFN-γ-producing CD4 T cells in the mesenteric lymph nodes and decreased production of T cell-related cytokines in the colon. PON-1 inhibited the TCR-induced activation of ERK-MAPK signaling and the nuclear translocation of NF-κB in CD4 T cells. Interestingly, an excessive CD4 T cell response was observed in PON-1-deficient mice under physiological and pathological conditions. Additionally, the efficacy of PON-1 or G3C9-C284A (G3C9), which shows a higher esterase activity than PON-1, on colitis was similar to that of an anti-TNF-α mAb, which is a clinically used CD treatment. Moreover, G3C9 more effectively suppressed CD4(+)CD45RB(high) cell transfer-induced chronic colitis in mice than did PON-1, and the efficacy of G3C9 against the colitis was similar to that of the anti-TNF-α mAb. Therefore, PON-1 (or G3C9) administration may be clinically beneficial for CD patients.


Subject(s)
Aryldialkylphosphatase/metabolism , Aryldialkylphosphatase/pharmacology , CD4-Positive T-Lymphocytes/immunology , Colitis/drug therapy , Crohn Disease/drug therapy , Interferon-gamma/metabolism , Active Transport, Cell Nucleus , Amino Acid Sequence , Animals , Antibodies, Monoclonal/immunology , Aryldialkylphosphatase/genetics , CD4-Positive T-Lymphocytes/metabolism , CHO Cells , Cell Differentiation , Cell Line , Colitis/chemically induced , Colitis/immunology , Colitis/metabolism , Colon/metabolism , Colon/pathology , Cricetinae , Crohn Disease/immunology , Crohn Disease/metabolism , Female , Humans , Interferon-gamma/antagonists & inhibitors , MAP Kinase Signaling System , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mice, SCID , NF-kappa B/metabolism , Th1 Cells/immunology , Th1 Cells/metabolism , Trinitrobenzenesulfonic Acid , Tumor Necrosis Factor-alpha/immunology
SELECTION OF CITATIONS
SEARCH DETAIL