Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
Adv Healthc Mater ; : e2303943, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38452399

ABSTRACT

The human microbiome significantly influences drug metabolism through the gut-liver axis, leading to modified drug responses and potential toxicity. Due to the complex nature of the human gut environment, the understanding of microbiome-driven impacts on these processes is limited. To address this, a multiorgan-on-a-chip (MOoC) platform that combines the human microbial-crosstalk (HuMiX) gut-on-chip (GoC) and the Dynamic42 liver-on-chip (LoC), mimicking the bidirectional interconnection between the gut and liver known as the gut-liver axis, is introduced. This platform supports the viability and functionality of intestinal and liver cells. In a proof-of-concept study, the metabolism of irinotecan, a widely used colorectal cancer drug, is imitated within the MOoC. Utilizing liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), irinotecan metabolites are tracked, confirming the platform's ability to represent drug metabolism along the gut-liver axis. Further, using the authors' gut-liver platform, it is shown that the colorectal cancer-associated gut bacterium, Escherichia coli, modifies irinotecan metabolism through the transformation of its inactive metabolite SN-38G into its toxic metabolite SN-38. This platform serves as a robust tool for investigating the intricate interplay between gut microbes and pharmaceuticals, offering a representative alternative to animal models and providing novel drug development strategies.

2.
Life Sci Alliance ; 7(3)2024 03.
Article in English | MEDLINE | ID: mdl-38195117

ABSTRACT

Juvenile neuronal ceroid lipofuscinosis (or Batten disease) is an autosomal recessive, rare neurodegenerative disorder that affects mainly children above the age of 5 yr and is most commonly caused by mutations in the highly conserved CLN3 gene. Here, we generated cln3 morphants and stable mutant lines in zebrafish. Although neither morphant nor mutant cln3 larvae showed any obvious developmental or morphological defects, behavioral phenotyping of the mutant larvae revealed hyposensitivity to abrupt light changes and hypersensitivity to pro-convulsive drugs. Importantly, in-depth metabolomics and lipidomics analyses revealed significant accumulation of several glycerophosphodiesters (GPDs) and cholesteryl esters, and a global decrease in bis(monoacylglycero)phosphate species, two of which (GPDs and bis(monoacylglycero)phosphates) were previously proposed as potential biomarkers for CLN3 disease based on independent studies in other organisms. We could also demonstrate GPD accumulation in human-induced pluripotent stem cell-derived cerebral organoids carrying a pathogenic variant for CLN3 Our models revealed that GPDs accumulate at very early stages of life in the absence of functional CLN3 and highlight glycerophosphoinositol and BMP as promising biomarker candidates for pre-symptomatic CLN3 disease.


Subject(s)
Induced Pluripotent Stem Cells , Neuronal Ceroid-Lipofuscinoses , Animals , Humans , Cholesterol Esters , Membrane Glycoproteins/genetics , Metabolomics , Molecular Chaperones , Neuronal Ceroid-Lipofuscinoses/genetics , Zebrafish/genetics
3.
BMC Palliat Care ; 22(1): 126, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37667303

ABSTRACT

BACKGROUND: The use of sedative drugs and intentional sedation in end-of-life care is associated with clinical, ethical and legal challenges. In view of these and of the issue's great importance to patients undergoing intolerable suffering, we conducted a project titled SedPall ("From anxiolysis to deep continuous sedation - Development of recommendations for sedation in palliative care") with the purpose of developing best practice recommendations on the use of sedative drugs and intentional sedation in specialist palliative care and obtaining feedback and approval from experts in this area. DESIGN: Our stepwise approach entailed drafting the recommendations, obtaining expert feedback, conducting a single-round Delphi study, and convening a consensus conference. As an interdisciplinary group, we created a set of best practice recommendations based on previously published guidance and empirical and normative analysis, and drawing on feedback from experts, including patient representatives and of public involvement participants. We set the required agreement rate for approval at the single-round Delphi and the consensus conference at ≥80%. RESULTS: Ten experts commented on the recommendations' first draft. The Delphi panel comprised 50 experts and patient and public involvement participants, while 46 participants attended the consensus conference. In total, the participants in these stages of the process approved 66 recommendations, covering the topics "indications", "intent/purpose [of sedation]", "decision-making", "information and consent", "medication and type of sedation", "monitoring", "management of fluids and nutrition", "continuing other measures", "support for relatives", and "team support". The recommendations include suggestions on terminology and comments on legal issues. CONCLUSION: Further research will be required for evaluating the feasibility of the recommendations' implementation and their effectiveness. The recommendations and the suggested terminology may serve as a resource for healthcare professionals in Germany on the use of sedative drugs and intentional sedation in specialist palliative care and may contribute to discussion on the topic at an international level. TRIAL REGISTRATION: DRKS00015047 (German Clinical Trials Register).


Subject(s)
Health Personnel , Palliative Care , Humans , Consensus , Germany , Hypnotics and Sedatives/therapeutic use
6.
Cell Rep ; 42(3): 112153, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36848289

ABSTRACT

Pyruvate dehydrogenase (PDH) is the central enzyme connecting glycolysis and the tricarboxylic acid (TCA) cycle. The importance of PDH function in T helper 17 (Th17) cells still remains to be studied. Here, we show that PDH is essential for the generation of a glucose-derived citrate pool needed for Th17 cell proliferation, survival, and effector function. In vivo, mice harboring a T cell-specific deletion of PDH are less susceptible to developing experimental autoimmune encephalomyelitis. Mechanistically, the absence of PDH in Th17 cells increases glutaminolysis, glycolysis, and lipid uptake in a mammalian target of rapamycin (mTOR)-dependent manner. However, cellular citrate remains critically low in mutant Th17 cells, which interferes with oxidative phosphorylation (OXPHOS), lipid synthesis, and histone acetylation, crucial for transcription of Th17 signature genes. Increasing cellular citrate in PDH-deficient Th17 cells restores their metabolism and function, identifying a metabolic feedback loop within the central carbon metabolism that may offer possibilities for therapeutically targeting Th17 cell-driven autoimmunity.


Subject(s)
Citric Acid , Th17 Cells , Mice , Animals , Citrates , Oxidoreductases , Lipids , Pyruvates , Mammals
7.
Antiviral Res ; 211: 105547, 2023 03.
Article in English | MEDLINE | ID: mdl-36682463

ABSTRACT

Human respiratory syncytial virus (RSV) is the leading cause of severe lower respiratory tract infections in infants, the elderly, and the immunocompromised, yet no licensed vaccine and only limited therapeutic options for prevention and treatment are available, which poses a global health challenge and emphasizes the urgent medical need for novel antiviral agents. In the current study, a novel potent small molecule inhibitor of RSV was identified by performing a screening and structure optimization campaign, wherein a naturally occurring dicaffeoylquinic acid (DCQA) compound served as a chemical starting point. The reported benzamide derivative inhibitor, designated as 2f, was selected for its improved stability and potent antiviral activity from a series of investigated structurally related compounds. 2f was well tolerated by cells and able to inhibit RSV infection with a half maximal inhibitory concentration (IC50) of 35 nM and a favorable selectivity index (SI) of 3742. Although the exact molecular target for 2f is not known, in vitro mechanism of action investigations revealed that the compound inhibits the early stage of infection by interacting with RSV virion and interferes primarily with the attachment and potentially with the virus-cell fusion step. Moreover, intranasal administration of 2f to mice simultaneously or prior to intranasal infection with RSV significantly decreased viral load in the lungs, pointing to the in vivo potential of the compound. Our results suggest that 2f is a viable candidate for further preclinical development and evaluation as an antiviral agent against RSV infections.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Infant , Mice , Humans , Animals , Aged , Respiratory Syncytial Virus Infections/drug therapy , Lung , Cell Line , Respiratory Tract Infections/drug therapy , Antiviral Agents/pharmacology
8.
J Enzyme Inhib Med Chem ; 38(1): 2165648, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36661029

ABSTRACT

Targeting metalloproteinases has been in the focus of drug design for a long time. However, meprin α and ß emerged as potential drug targets just recently and are linked to several diseases with different pathological background. Nevertheless, the validation of meprins as suitable drug targets still requires highly potent and selective inhibitors as chemical probes to elucidate their role in pathophysiology. Albeit highly selective inhibitors of meprin ß have already been reported, only inhibitors of meprin α with modest activity or selectivity are known. Starting from recently reported heteroaromatic scaffolds, the aim of this study was the optimisation of meprin α and/or meprin ß inhibition while keeping the favourable off-target inhibition profile over other metalloproteases. We report potent pan-meprin inhibitors as well as highly active inhibitors of meprin α with superior selectivity over meprin ß. The latter are suitable to serve as chemical probes and enable further target validation.


Subject(s)
Metalloendopeptidases , Metalloproteases , Structure-Activity Relationship , Metalloproteases/metabolism , Drug Design
9.
Nat Commun ; 13(1): 6178, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36261433

ABSTRACT

The zinc-dependent metalloprotease meprin α is predominantly expressed in the brush border membrane of proximal tubules in the kidney and enterocytes in the small intestine and colon. In normal tissue homeostasis meprin α performs key roles in inflammation, immunity, and extracellular matrix remodelling. Dysregulated meprin α is associated with acute kidney injury, sepsis, urinary tract infection, metastatic colorectal carcinoma, and inflammatory bowel disease. Accordingly, meprin α is the target of drug discovery programs. In contrast to meprin ß, meprin α is secreted into the extracellular space, whereupon it oligomerises to form giant assemblies and is the largest extracellular protease identified to date (~6 MDa). Here, using cryo-electron microscopy, we determine the high-resolution structure of the zymogen and mature form of meprin α, as well as the structure of the active form in complex with a prototype small molecule inhibitor and human fetuin-B. Our data reveal that meprin α forms a giant, flexible, left-handed helical assembly of roughly 22 nm in diameter. We find that oligomerisation improves proteolytic and thermal stability but does not impact substrate specificity or enzymatic activity. Furthermore, structural comparison with meprin ß reveal unique features of the active site of meprin α, and helical assembly more broadly.


Subject(s)
Fetuin-B , Metalloendopeptidases , Humans , Cryoelectron Microscopy , Metalloendopeptidases/metabolism , Metalloproteases , Enzyme Precursors , Zinc
10.
ACS Med Chem Lett ; 13(8): 1302-1310, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35982823

ABSTRACT

8-Nitro-1,3-benzothiazin-4-ones (BTZs) are known as potent antitubercular agents. BTZ043 as one of the most advanced compounds has reached clinical trials. The putative oxidation products of BTZ043, namely, the corresponding BTZ sulfoxide and sulfone, were reported in this journal (Tiwari et al. ACS Med. Chem Lett. 2015, 6, 128-133). The molecular structures were later revised to the constitutionally isomeric benzisothiazolone and its 1-oxide, respectively. Here, we report two BTZ043-derived benzisothiazolinones (BITs) with in vitro activity against mycobacteria. The constitutionally isomeric O-acyl benzisothiazol-3-ols, in contrast, show little or no antimycobacterial activity in vitro. The structures of the four compounds were investigated by X-ray crystallography and NMR spectroscopy. Molecular covalent docking of the new compounds to Mycobacerium tuberculosis decaprenylphosphoryl-ß-d-ribose 2'-epimerase (DprE1) suggests that the active BITs exert antimycobacterial activity through inhibition of DprE1 like BTZs.

11.
Cells ; 11(15)2022 07 22.
Article in English | MEDLINE | ID: mdl-35892568

ABSTRACT

Development of heart failure (HF) after myocardial infarction (MI) is responsible for premature death. Complex cellular and molecular mechanisms are involved in this process. A number of studies have linked the epitranscriptomic RNA modification N6-methyladenosine (m6A) with HF, but it remains unknown how m6A affects the risk of developing HF after MI. We addressed the regulation of m6A and its demethylase fat mass and obesity-associated (FTO) after MI and their association with HF. Using liquid chromatography coupled to mass spectrometry, we observed an increase of m6A content in the infarcted area of rat hearts subjected to coronary ligation and a decrease in blood. FTO expression measured by quantitative PCR was downregulated in the infarcted hearts. In whole blood samples collected at the time of reperfusion in MI patients, m6A content was lower in patients who developed HF as attested by a 4-month ejection fraction (EF) of ≤40% as compared to patients who did not develop HF (EF > 50%). M6A content was higher in females. These results show that m6A measured in blood is associated with HF development after MI and motivate further investigation of the potential role of m6A as a novel epitranscriptomics biomarker and therapeutic target of HF.


Subject(s)
Heart Failure , Myocardial Infarction , Adenosine/analogs & derivatives , Adenosine/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Female , Humans , RNA, Messenger/genetics , Ventricular Function, Left
12.
Nat Commun ; 13(1): 1789, 2022 04 04.
Article in English | MEDLINE | ID: mdl-35379825

ABSTRACT

The metabolic principles underlying the differences between follicular and marginal zone B cells (FoB and MZB, respectively) are not well understood. Here we show, by studying mice with B cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), that glutathione synthesis affects homeostasis and differentiation of MZB to a larger extent than FoB, while glutathione-dependent redox control contributes to the metabolic dependencies of FoB. Specifically, Gclc ablation in FoB induces metabolic features of wild-type MZB such as increased ATP levels, glucose metabolism, mTOR activation, and protein synthesis. Furthermore, Gclc-deficient FoB have a block in the mitochondrial electron transport chain (ETC) due to diminished complex I and II activity and thereby accumulate the tricarboxylic acid cycle metabolite succinate. Finally, Gclc deficiency hampers FoB activation and antibody responses in vitro and in vivo, and induces susceptibility to viral infections. Our results thus suggest that Gclc is required to ensure the development of MZB, the mitochondrial ETC integrity in FoB, and the efficacy of antiviral humoral immunity.


Subject(s)
Glutamate-Cysteine Ligase , Lymphoid Tissue , Animals , B-Lymphocytes , Glutathione/metabolism , Lymphoid Tissue/metabolism , Mice , Oxidation-Reduction
13.
Mov Disord ; 37(1): 80-94, 2022 01.
Article in English | MEDLINE | ID: mdl-34637165

ABSTRACT

BACKGROUND: The etiology of Parkinson's disease (PD) is only partially understood despite the fact that environmental causes, risk factors, and specific gene mutations are contributors to the disease. Biallelic mutations in the phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) gene involved in mitochondrial homeostasis, vesicle trafficking, and autophagy are sufficient to cause PD. OBJECTIVES: We sought to evaluate the difference between controls' and PINK1 patients' derived neurons in their transition from neuroepithelial stem cells to neurons, allowing us to identify potential pathways to target with repurposed compounds. METHODS: Using two-dimensional and three-dimensional models of patients' derived neurons we recapitulated PD-related phenotypes. We introduced the usage of midbrain organoids for testing compounds. Using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), we corrected the point mutations of three patients' derived cells. We evaluated the effect of the selected compound in a mouse model. RESULTS: PD patient-derived cells presented differences in their energetic profile, imbalanced proliferation, apoptosis, mitophagy, and a reduced differentiation efficiency to tyrosine hydroxylase positive (TH+) neurons compared to controls' cells. Correction of a patient's point mutation ameliorated the metabolic properties and neuronal firing rates as well as reversing the differentiation phenotype, and reducing the increased astrocytic levels. Treatment with 2-hydroxypropyl-ß-cyclodextrin increased the autophagy and mitophagy capacity of neurons concomitant with an improved dopaminergic differentiation of patient-specific neurons in midbrain organoids and ameliorated neurotoxicity in a mouse model. CONCLUSION: We show that treatment with a repurposed compound is sufficient for restoring the impaired dopaminergic differentiation of PD patient-derived cells. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , 2-Hydroxypropyl-beta-cyclodextrin/metabolism , Animals , Brain/metabolism , Dopaminergic Neurons/metabolism , Humans , Mice , Neurons/metabolism , Organoids/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Parkinson Disease/metabolism , Phenotype
14.
Sci Adv ; 7(42): eabj4565, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34652941

ABSTRACT

Glycolipids are prominent components of bacterial membranes that play critical roles not only in maintaining the structural integrity of the cell but also in modulating host-pathogen interactions. PatA is an essential acyltransferase involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIMs), key structural elements and virulence factors of Mycobacterium tuberculosis. We demonstrate by electron spin resonance spectroscopy and surface plasmon resonance that PatA is an integral membrane acyltransferase tightly anchored to anionic lipid bilayers, using a two-helix structural motif and electrostatic interactions. PatA dictates the acyl chain composition of the glycolipid by using an acyl chain selectivity "ruler." We established this by a combination of structural biology, enzymatic activity, and binding measurements on chemically synthesized nonhydrolyzable acyl­coenzyme A (CoA) derivatives. We propose an interfacial catalytic mechanism that allows PatA to acylate hydrophobic PIMs anchored in the inner membrane of mycobacteria, through the use of water-soluble acyl-CoA donors.

15.
Int J Mol Sci ; 22(11)2021 May 26.
Article in English | MEDLINE | ID: mdl-34073350

ABSTRACT

The astacin protease Meprin ß represents an emerging target for drug development due to its potential involvement in disorders such as acute and chronic kidney injury and fibrosis. Here, we elaborate on the structural basis of inhibition by a specific Meprin ß inhibitor. Our analysis of the crystal structure suggests different binding modes of the inhibitor to the active site. This flexibility is caused, at least in part, by movement of the C-terminal region of the protease domain (CTD). The CTD movement narrows the active site cleft upon inhibitor binding. Compared with other astacin proteases, among these the highly homologous isoenzyme Meprin α, differences in the subsites account for the unique selectivity of the inhibitor. Although the inhibitor shows substantial flexibility in orientation within the active site, the structural data as well as binding analyses, including molecular dynamics simulations, support a contribution of electrostatic interactions, presumably by arginine residues, to binding and specificity. Collectively, the results presented here and previously support an induced fit and substantial movement of the CTD upon ligand binding and, possibly, during catalysis. To the best of our knowledge, we here present the first structure of a Meprin ß holoenzyme containing a zinc ion and a specific inhibitor bound to the active site. The structural data will guide rational drug design and the discovery of highly potent Meprin inhibitors.


Subject(s)
Hydroxamic Acids/chemistry , Metalloendopeptidases/antagonists & inhibitors , Metalloendopeptidases/chemistry , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Humans , Structure-Activity Relationship
16.
ChemMedChem ; 16(6): 976-988, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33369214

ABSTRACT

Astacin metalloproteinases, in particular meprins α and ß, as well as ovastacin, are emerging drug targets. Drug-discovery efforts have led to the development of the first potent and selective inhibitors in the last few years. However, the most recent compounds are based on a highly flexible tertiary amine scaffold that could cause metabolic liabilities or decreased potency due to the entropic penalty upon binding to the target. Thus, the aim of this study was to discover novel conformationally constrained scaffolds as starting points for further inhibitor optimization. Shifting from flexible tertiary amines to rigid heteroaromatic cores resulted in a boost in inhibitory activity. Moreover, some compounds already exhibited higher activity against individual astacin proteinases compared to recently reported inhibitors and also a favorable off-target selectivity profile, thus qualifying them as very suitable chemical probes for target validation.


Subject(s)
Amines/pharmacology , Antineoplastic Agents/pharmacology , Drug Discovery , Hydrocarbons, Aromatic/pharmacology , Metalloendopeptidases/antagonists & inhibitors , Metalloproteases/antagonists & inhibitors , Protease Inhibitors/pharmacology , Amines/chemical synthesis , Amines/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Hydrocarbons, Aromatic/chemical synthesis , Hydrocarbons, Aromatic/chemistry , Metalloendopeptidases/metabolism , Metalloproteases/metabolism , Molecular Structure , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Recombinant Proteins/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured
17.
ISME Commun ; 1: 82, 2021 Dec 21.
Article in English | MEDLINE | ID: mdl-35106519

ABSTRACT

The human gut microbiome produces a complex mixture of biomolecules that interact with human physiology and play essential roles in health and disease. Crosstalk between micro-organisms and host cells is enabled by different direct contacts, but also by the export of molecules through secretion systems and extracellular vesicles. The resulting molecular network, comprised of various biomolecular moieties, has so far eluded systematic study. Here we present a methodological framework, optimized for the extraction of the microbiome-derived, extracellular biomolecular complement, including nucleic acids, (poly)peptides, and metabolites, from flash-frozen stool samples of healthy human individuals. Our method allows simultaneous isolation of individual biomolecular fractions from the same original stool sample, followed by specialized omic analyses. The resulting multi-omics data enable coherent data integration for the systematic characterization of this molecular complex. Our results demonstrate the distinctiveness of the different extracellular biomolecular fractions, both in terms of their taxonomic and functional composition. This highlights the challenge of inferring the extracellular biomolecular complement of the gut microbiome based on single-omic data. The developed methodological framework provides the foundation for systematically investigating mechanistic links between microbiome-secreted molecules, including those that are typically vesicle-associated, and their impact on host physiology in health and disease.

18.
Nat Commun ; 11(1): 5281, 2020 10 19.
Article in English | MEDLINE | ID: mdl-33077707

ABSTRACT

The development of reliable, mixed-culture biotechnological processes hinges on understanding how microbial ecosystems respond to disturbances. Here we reveal extensive phenotypic plasticity and niche complementarity in oleaginous microbial populations from a biological wastewater treatment plant. We perform meta-omics analyses (metagenomics, metatranscriptomics, metaproteomics and metabolomics) on in situ samples over 14 months at weekly intervals. Based on 1,364 de novo metagenome-assembled genomes, we uncover four distinct fundamental niche types. Throughout the time-series, we observe a major, transient shift in community structure, coinciding with substrate availability changes. Functional omics data reveals extensive variation in gene expression and substrate usage amongst community members. Ex situ bioreactor experiments confirm that responses occur within five hours of a pulse disturbance, demonstrating rapid adaptation by specific populations. Our results show that community resistance and resilience are a function of phenotypic plasticity and niche complementarity, and set the foundation for future ecological engineering efforts.


Subject(s)
Bacteria/genetics , Bacteria/metabolism , Microbiota , Wastewater/microbiology , Bacteria/classification , Bacteria/isolation & purification , Bioreactors/microbiology , Ecosystem , Metabolomics , Metagenome , Metagenomics , Proteomics , Time Factors
19.
ChemMedChem ; 15(16): 1499-1504, 2020 08 19.
Article in English | MEDLINE | ID: mdl-32946206

ABSTRACT

Despite huge progress in hormonal therapy and improved in vitro fertilization methods, the success rates in infertility treatment are still limited. A recently discovered mechanism revealed the interplay between the plasma protein fetuin-B and the cortical granule-based proteinase ovastacin to be a novel key mechanism in the regulation of fertilization. Upon sperm-egg fusion, cleavage of a distinct zona pellucida component by ovastacin destroys the sperm receptor, enhances zona robustness, and eventually provides a definitive block against polyspermy. An untimely onset of this zona hardening prior to fertilization would consequently result in infertility. Physiologically, this process is controlled by fetuin-B, an endogenous ovastacin inhibitor. Here we aimed to discover small-molecule inhibitors of ovastacin that could mimic the effect of fetuin-B. These compounds could be useful lead structures for the development of specific ovastacin inhibitors that can be used in infertility treatment or in vitro fertilization.


Subject(s)
Amines/pharmacology , Hydroxamic Acids/pharmacology , Infertility, Female/drug therapy , Metalloproteases/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Amines/chemistry , Animals , Biocatalysis , Dose-Response Relationship, Drug , Female , Hydroxamic Acids/chemistry , Infertility, Female/metabolism , Metalloproteases/metabolism , Mice , Models, Molecular , Molecular Structure , Small Molecule Libraries/chemistry , Structure-Activity Relationship
20.
Mov Disord ; 35(12): 2201-2210, 2020 12.
Article in English | MEDLINE | ID: mdl-32853481

ABSTRACT

BACKGROUND: Alterations in the GBA gene (NM_000157.3) are the most important genetic risk factor for Parkinson's disease (PD). Biallelic GBA mutations cause the lysosomal storage disorder Gaucher's disease. The GBA variants p.E365K and p.T408M are associated with PD but not with Gaucher's disease. The pathophysiological role of these variants needs to be further explored. OBJECTIVE: This study analyzed clinical, neuropsychological, metabolic, and neuroimaging phenotypes of patients with PD carrying the GBA variants p.E365K and p.T408M. METHODS: GBA was sequenced in 56 patients with mid-stage PD. Carriers of GBA variants were compared with noncarriers regarding clinical history and symptoms, neuropsychological features, metabolomics, and multimodal neuroimaging. Blood plasma gas chromatography coupled to mass spectrometry, 6-[18 F]fluoro-L-Dopa positron emission tomography (PET), [18 F]fluorodeoxyglucose PET, and resting-state functional magnetic resonance imaging were performed. RESULTS: Sequence analysis detected 13 heterozygous GBA variant carriers (7 with p.E365K, 6 with p.T408M). One patient carried a GBA mutation (p.N409S) and was excluded. Clinical history and symptoms were not significantly different between groups. Global cognitive performance was lower in variant carriers. Metabolomic group differences were suggestive of more severe PD-related alterations in carriers versus noncarriers. Both PET scans showed signs of a more advanced disease; [18 F]fluorodeoxyglucose PET and functional magnetic resonance imaging showed similarities with Lewy body dementia and PD dementia in carriers. CONCLUSIONS: This is the first study to comprehensively assess (neuro-)biological phenotypes of GBA variants in PD. Metabolomics and neuroimaging detected more significant group differences than clinical and behavioral evaluation. These alterations could be promising to monitor effects of disease-modifying treatments targeting glucocerebrosidase metabolism. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Glucosylceramidase/genetics , Humans , Metabolomics , Mutation/genetics , Neuroimaging , Parkinson Disease/diagnostic imaging , Parkinson Disease/genetics , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...