Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 139
1.
Clin Transl Sci ; 17(5): e13804, 2024 May.
Article En | MEDLINE | ID: mdl-38700454

St. John's wort (SJW) extract, a herbal medicine with antidepressant effects, is a potent inducer of intestinal and/or hepatic cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp), which can cause clinically relevant drug interactions. It is currently not known whether SJW can also induce P-gp activity at the human blood-brain barrier (BBB), which may potentially lead to decreased brain exposure and efficacy of certain central nervous system (CNS)-targeted P-gp substrate drugs. In this study, we used a combination of positron emission tomography (PET) imaging and cocktail phenotyping to gain a comprehensive picture on the effect of SJW on central and peripheral P-gp and CYP activities. Before and after treatment of healthy volunteers (n = 10) with SJW extract with a high hyperforin content (3-6%) for 12-19 days (1800 mg/day), the activity of P-gp at the BBB was assessed by means of PET imaging with the P-gp substrate [11C]metoclopramide and the activity of peripheral P-gp and CYPs was assessed by administering a low-dose phenotyping cocktail (caffeine, omeprazole, dextromethorphan, and midazolam or fexofenadine). SJW significantly increased peripheral P-gp, CYP3A, and CYP2C19 activity. Conversely, no significant changes in the peripheral metabolism, brain distribution, and P-gp-mediated efflux of [11C]metoclopramide across the BBB were observed following the treatment with SJW extract. Our data suggest that SJW does not lead to significant P-gp induction at the human BBB despite its ability to induce peripheral P-gp and CYPs. Simultaneous intake of SJW with CNS-targeted P-gp substrate drugs is not expected to lead to P-gp-mediated drug interactions at the BBB.


Blood-Brain Barrier , Hypericum , Phloroglucinol , Phloroglucinol/analogs & derivatives , Plant Extracts , Positron-Emission Tomography , Terfenadine/analogs & derivatives , Terpenes , Humans , Hypericum/chemistry , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Phloroglucinol/pharmacokinetics , Phloroglucinol/pharmacology , Phloroglucinol/administration & dosage , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Plant Extracts/pharmacokinetics , Male , Adult , Positron-Emission Tomography/methods , Terpenes/pharmacology , Terpenes/pharmacokinetics , Terpenes/metabolism , Female , Young Adult , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily B/metabolism , Bridged Bicyclo Compounds/pharmacology , Bridged Bicyclo Compounds/pharmacokinetics , Bridged Bicyclo Compounds/administration & dosage , Terfenadine/pharmacokinetics , Terfenadine/administration & dosage , Terfenadine/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Healthy Volunteers
2.
Int J Antimicrob Agents ; : 107180, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38649034

OBJECTIVE: Timing and dosing of antimicrobial therapy is key in the treatment of pneumonia in critically ill patients. It is uncertain whether presence of lung inflammation and injury affects tissue penetration of intravenously administered antimicrobial drugs. We determined the effects of lung inflammation and injury on tissue penetration of two commonly used antimicrobial drugs for pneumonia in an established model of unilateral lung injury. METHODS: In 13 healthy pigs, unilateral lung injury was induced in the left lung through cyclic rinsing - the right healthy lung served as control. After infusion of meropenem and vancomycin, lung tissue, blood, and epithelial lining fluid concentrations were monitored and compared over a period of 6 hours. RESULTS: Median vancomycin lung tissue concentrations as well as penetration ratio were higher in inflamed and injured lungs compared to uninflamed and uninjured lungs (AUC0-6h: P = 0.003 and AUCdialysate/AUCplasma ratio: P = 0.003), resulting in higher AUC0-24/MIC. Median meropenem lung tissue concentrations as well as penetration were not different in inflamed and injured lungs compared to uninflamed and uninjured lungs (AUC0-6 P = 0.094 and AUCdialysate/AUCplasma ratio P = 0.173). Penetration ratio for both vancomycin and meropenem into epithelial lining fluid was not different between injured and uninjured lungs. CONCLUSION: Vancomycin penetration into lung tissue is enhanced by acute inflammation and injury, a phenomenon barely evident with meropenem. Therefore, inflammation in lung tissue influences the penetration into interstitial lung tissue, depending on the chosen antimicrobial drug. Measurement of ELF levels alone might not detect impact of inflammation and injury.

3.
Antimicrob Agents Chemother ; 68(4): e0164723, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38376186

For antimicrobial agents in particular, plasma protein binding (PPB) plays a pivotal role in deciphering key properties of drug candidates. Animal models are generally used in the preclinical development of new drugs to predict their effects in humans using translational pharmacokinetics/pharmacodynamics (PK/PD). Thus, we compared the protein binding (PB) of cefazolin as well as bacterial growth under various conditions in vitro. The PB extent of cefazolin was studied in human, bovine, and rat plasmas at different antibiotic concentrations in buffer and media containing 20-70% plasma or pure plasma using ultrafiltration (UF) and equilibrium dialysis (ED). Moreover, bacterial growth and time-kill assays were performed in Mueller Hinton Broth (MHB) containing various plasma percentages. The pattern for cefazolin binding to plasma proteins was found to be similar for both UF and ED. There was a significant decrease in cefazolin binding to bovine plasma compared to human plasma, whereas the pattern in rat plasma was more consistent with that in human plasma. Our growth curve analysis revealed considerable growth inhibition of Escherichia coli at 70% bovine or rat plasma compared with 70% human plasma or pure MHB. As expected, our experiments with cefazolin at low concentrations showed that E. coli grew slightly better in 20% human and rat plasma compared to MHB, most probably due to cefazolin binding to proteins in the plasma. Based on the example of cefazolin, our study highlights the interspecies differences of PB with potential impact on PK/PD. These findings should be considered before preclinical PK/PD data can be extrapolated to human patients.


Anti-Bacterial Agents , Anti-Infective Agents , Humans , Animals , Cattle , Rats , Anti-Bacterial Agents/pharmacology , Cefazolin/pharmacology , Protein Binding , Escherichia coli/metabolism , Blood Proteins/metabolism
4.
Am J Respir Crit Care Med ; 209(7): 829-839, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38099833

Rationale: Pneumonia is a frequent and feared complication in intubated critically ill patients. Tissue concentrations of antimicrobial drugs need to be sufficiently high to treat the infection and also prevent development of bacterial resistance. It is uncertain whether pulmonary inflammation and injury affect antimicrobial drug penetration into lung tissue.Objectives: To determine and compare tissue and BAL fluid concentrations of ceftaroline fosamil and linezolid in a model of unilateral acute lung injury in pigs and to evaluate whether dose adjustment is necessary to reach sufficient antimicrobial concentrations in injured lung tissue.Methods: After induction of unilateral acute lung injury, ceftaroline fosamil and linezolid were administered intravenously. Drug concentrations were measured in lung tissue through microdialysis and in blood and BAL fluid samples during the following 8 hours. The primary endpoint was the tissue concentration area under the concentration curve in the first 8 hours (AUC0-8 h) of the two antimicrobial drugs.Measurements and Main Results: In 10 pigs, antimicrobial drug concentrations were higher in inflamed and injured lung tissue compared with those in uninflamed and uninjured lung tissue (median ceftaroline fosamil AUC0-8 h [and interquartile range] = 26.7 mg ⋅ h ⋅ L-1 [19.7-39.0] vs. 16.0 mg ⋅ h ⋅ L-1 [13.6-19.9], P = 0.02; median linezolid AUC0-8 h 76.0 mg ⋅ h ⋅ L-1 [68.1-96.0] vs. 54.6 mg ⋅ h ⋅ L-1 [42.7-60.9], P = 0.01), resulting in a longer time above the minimal inhibitory concentration and in higher peak concentrations and dialysate/plasma ratios. Penetration into BAL fluid was excellent for both antimicrobials, but without left-to-right differences (ceftaroline fosamil, P = 0.78; linezolid, P = 1.00).Conclusions: Tissue penetration of two commonly used antimicrobial drugs for pneumonia is enhanced by early lung tissue inflammation and injury, resulting in longer times above the minimal inhibitory concentration. Thus, lung tissue inflammation ameliorates antimicrobial drug penetration during the acute phase.


Acute Lung Injury , Anti-Infective Agents , Pneumonia , Humans , Animals , Swine , Linezolid/therapeutic use , Anti-Bacterial Agents/adverse effects , Anti-Infective Agents/therapeutic use , Ceftaroline , Pneumonia/drug therapy , Pneumonia/chemically induced , Inflammation/drug therapy , Inflammation/chemically induced , Lung , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced
5.
Molecules ; 28(6)2023 Mar 13.
Article En | MEDLINE | ID: mdl-36985582

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus has been causing the COVID-19 pandemic since December 2019, with over 600 million infected persons worldwide and over six million deaths. We investigated the anti-viral effects of polyphenolic green tea ingredients and the synthetic resveratrol analogue 3,3',4,4',5,5'-hexahydroxy-trans-stilbene (HHS), a compound with antioxidant, antitumor and anti-HIV properties. In the TCID50 assay, four out of nine green tea constituents showed minor to modest cell protective effects, whereas HHS demonstrated the highest reduction (1103-fold) of the TCID50, indicating pronounced inhibition of virus replication. HHS was also a highly effective inhibitor of SARS-CoV-2 proliferation in VeroE6 cells with an IC50 value of 31.1 µM. HSS also inhibited the binding of the receptor-binding domain (RBD) of the spike protein to the human angiotensin-converting enzyme 2 (ACE2) receptor (RBD-ACE2) binding with 29% at 100 µM and with 9.2% at 50 µM indicating that the SARS-CoV-2 inhibitory effect might at least in part be attributed to the inhibition of virus binding to ACE2. Based on the chemical similarity to other polyphenols, the oral bioavailability of HHS is likely also very low, resulting in blood levels far below the inhibitory concentration of EGCG against SARS-CoV-2 observed in vitro. However, administration of HHS topically as a nose or throat spray would increase concentrations several-fold above the minimal inhibitory concentration (MIC) in the mucosa and might reduce virus load when administered soon after infection. Due to these promising tissue culture results, further preclinical and clinical studies are warranted to develop HHS as an additional treatment option for SARS-CoV-2 infection to complement vaccines, which is and will be the main pillar to combat the COVID-19 pandemic.


COVID-19 , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2/metabolism , Resveratrol/pharmacology , Pandemics , Protein Binding
6.
Clin Pharmacokinet ; 62(1): 77-87, 2023 01.
Article En | MEDLINE | ID: mdl-36471223

BACKGROUND AND OBJECTIVE: Exhaustive pharmacokinetic (PK) studies in paediatric patients are unavailable for most antibiotics and feasibility of PK studies is limited by challenges, such as low blood volume and venipuncture-related pain. Microdialysis (MD) represents a promising method to overcome these obstacles. The aim of this proof-of-concept study was to develop and validate modified MD catheters that can be used to obtain concentration-time profiles of antibiotics in paediatric patients. METHODS: Following extensive in vitro MD experiments, a prospective open-labelled study in ten healthy adult volunteers (HVs) was conducted. Subjects received a single intravenous dose of 1000 mg vancomycin, then plasma and intravascular microdialysate were sampled over 24 h. In vivo MD probe calibration was conducted using the retrodialysis technique. Plasma protein binding was measured using ultrafiltration. Confirmation of the measurements was performed using a Bland-Altman plot, relevant PK parameters were calculated, and a pharmacometric model was established. RESULTS: No safety issues were encountered. The concentration-time curves of microdialysate and plasma measurements showed good alignment. The Bland-Altman plot yielded a mean bias of 0.19 mg/L and 95% limits of agreement of - 9.34 to 9.71 mg/L. A two-compartment model best described plasma PK, model-based estimates for recovery of the MD probes being in high agreement with the observed values. Quantified estimates of fraction unbound were comparable between plasma and microdialysate (p = 0.56). CONCLUSIONS: An innovative MD catheter that can be inserted into small intravenous lines was successfully developed and applied in HV. This proof-of-concept study is encouraging and opens the way to further experiments leading towards future use of MD in paediatric patients.


Anti-Bacterial Agents , Vancomycin , Humans , Adult , Child , Microdialysis/methods , Prospective Studies , Anti-Bacterial Agents/pharmacokinetics , Catheters
7.
Front Pharmacol ; 13: 946348, 2022.
Article En | MEDLINE | ID: mdl-36105223

Patients with high-grade serous ovarian cancer (HGSOC) have a very poor overall survival. Current therapeutic approaches do not bring benefit to all patients. Although genetic alterations and molecular mechanisms are well characterized, the molecular pathological conditions are poorly investigated. Solute carrier organic anion transporter family member 4A1 (SLCO4A1) encodes OATP4A1, which is an uptake membrane transporter of metabolic products. Its expression may influence various signaling pathways associated with the molecular pathophysiological conditions of HGSOC and consequently tumor progression. RNA sequencing of 33 patient-derived HGSOC cell lines showed that SLCO4A1 expression was diverse by individual tumors, which was further confirmed by RT-qPCR, Western blotting and immunohistochemistry. Gene Set Enrichment Analysis revealed that higher SLCO4A1 level was associated with inflammation-associated pathways including NOD-like receptor, adipocytokine, TALL1, CD40, NF-κB, and TNF-receptor 2 signaling cascades, while low SLCO4A1 expression was associated with the mitochondrial electron transport chain pathway. The overall gene expression pattern in all cell lines was specific to each patient and remained largely unchanged during tumor progression. In addition, genes encoding ABCC3 along with SLCO4A1-antisense RNA 1, were associated with higher expression of the SLCO4A1, indicating their possible involvement in inflammation-associated pathways that are downstream to the prostaglandin E2/cAMP axis. Taken together, increased SLCO4A1/OATP4A1 expression is associated with the upregulation of specific inflammatory pathways, while the decreased level is associated with mitochondrial dysfunction. These molecular pathophysiological conditions are tumor specific and should be taken into consideration by the development of therapies against HGSOC.

8.
Antimicrob Agents Chemother ; 66(8): e0043822, 2022 08 16.
Article En | MEDLINE | ID: mdl-35862739

Meropenem is a broad spectrum carbapenem used for the treatment of cerebral infections. There is a need for data describing meropenem pharmacokinetics (PK) in the brain tissue to optimize therapy in these infections. Here, we present a meropenem PK model in the central nervous system and simulate dosing regimens. This was a population PK analysis of a previously published prospective study of patients admitted to the neurointesive care unit between 2016 and 2019 who received 2 g of meropenem intravenously every 8 h. Meropenem concentration was determined in blood, cerebrospinal fluid (CSF), and brain microdialysate. Meropenem was described by a six-compartment model: two compartments in the blood, two in the CSF, and two in the brain tissue. Creatinine clearance and brain glucose were included as covariates. The median elimination rate constant was 1.26 h-1, the central plasma volume was 5.38 L, and the transfer rate constants from the blood to the CSF and from the blood to the brain were 0.001 h-1 and 0.02 h-1, respectively. In the first 24 h, meropenem 2 g, administered every 8 h via intermittent and extended infusions achieved good target attainment in the CSF and brain, but continuous infusion (CI) was better at steady-state. Administering a 3 g loading dose (LD) followed by 8 g CI was beneficial for early target attainment. In conclusion, a meropenem PK model was developed using blood, CSF, and brain microdialysate samples. An 8 g CI may be needed for good target attainment in the CSF and brain. Giving a LD prior to the CI improved the probability of early target attainment.


Anti-Bacterial Agents , Brain , Anti-Bacterial Agents/pharmacokinetics , Critical Illness , Humans , Meropenem/pharmacokinetics , Monte Carlo Method , Prospective Studies , Thienamycins/pharmacokinetics
9.
Cancer Chemother Pharmacol ; 89(5): 617-627, 2022 05.
Article En | MEDLINE | ID: mdl-35355137

PURPOSE: Although temozolomide is widely used in the treatment of childhood central nervous system (CNS) tumors, information on its pharmacokinetic profile in the brain or cerebrospinal fluid (CSF) is sparse. This study aimed at investigating whether measurable and clinically relevant concentrations of temozolomide are reached and maintained in CSF for continuous oral administration in pediatric patients. A population pharmacokinetic model was developed to quantify CSF penetration of temozolomide. METHODS: Eleven pediatric CNS tumor patients (aged 4-14 years) treated with oral temozolomide using a metronomic schedule (24-77 mg/m2/day) were included. Temozolomide concentrations in 28 plasma samples and 64 CSF samples were analyzed by high-performance liquid chromatography. Population pharmacokinetic modeling and simulations were performed using non-linear mixed effects modeling (NONMEM 7.4.2). RESULTS: Median temozolomide concentrations in plasma and CSF were 0.96 (range 0.24-5.99) µg/ml and 0.37 (0.06-1.76) µg/ml, respectively. A two-compartment model (central/plasma [1], CSF [2]) with first-order absorption, first-order elimination, and a transit compartment between CSF and plasma adequately described the data. Population mean estimates for clearance (CL) and the volume of distribution in the central compartment (Vc) were 3.29 L/h (95% confidence interval (CI) 2.58-3.95) and 10.5 L (8.17-14.32), respectively. Based on simulations, we found a median area under the concentration vs. time curve ratio (AUCCSF / AUCplasma ratio) of 37%. CONCLUSION: Metronomic oral temozolomide penetrates into the CSF in pediatric patients, with even higher concentration levels compared to adults.


Central Nervous System Neoplasms , Adult , Animals , Area Under Curve , Central Nervous System Neoplasms/drug therapy , Child , Chromatography, High Pressure Liquid , Humans , Macaca mulatta , Temozolomide
10.
Clin Pharmacokinet ; 61(5): 697-707, 2022 05.
Article En | MEDLINE | ID: mdl-34997559

BACKGROUND AND OBJECTIVE: In microdose studies, drug pharmacokinetics is measured in humans after administration of subtherapeutic doses. While previous microdose studies focused primarily on plasma pharmacokinetics, we set out to evaluate the feasibility of microdosing for a pharmacokinetic assessment in subcutaneous tissue and epithelial lining fluid. METHODS: Healthy subjects received a single intravenous bolus injection of a microdose of [14C]ciprofloxacin (1.1 µg, 7 kBq) with (cohort A, n = 9) or without (cohort B, n = 9) a prior intravenous infusion of a therapeutic dose of unlabeled ciprofloxacin (400 mg). Microdialysis and bronchoalveolar lavage were applied for determination of subcutaneous and intrapulmonary drug concentrations. Microdose [14C]ciprofloxacin was quantified by accelerator mass spectrometry and therapeutic-dose ciprofloxacin by liquid chromatography-tandem mass spectrometry. RESULTS: The pharmacokinetics of therapeutic-dose ciprofloxacin (cohort A) in plasma, subcutaneous tissue, and epithelial lining fluid was in accordance with previous data. In plasma and subcutaneous tissue, the dose-adjusted area under the concentration-time curve of microdose ciprofloxacin was similar in cohorts A and B and within an 0.8-fold to 1.1-fold range of the area under the concentration-time curve of therapeutic-dose ciprofloxacin. Penetration of microdose ciprofloxacin into subcutaneous tissue was similar in cohorts A and B and comparable to that of therapeutic-dose ciprofloxacin with subcutaneous tissue-to-plasma area under the concentration-time curve ratios of 0.44, 0.44, and 0.38, respectively. Penetration of microdose ciprofloxacin into epithelial lining fluid was highly variable and failed to predict the epithelial lining fluid penetration of therapeutic-dose ciprofloxacin. CONCLUSIONS: Our study confirms the feasibility of microdosing for pharmacokinetic measurements in plasma and subcutaneous tissue. Microdosing combined with microdialysis is a potentially useful tool in clinical antimicrobial drug development, but its applicability for the assessment of pulmonary pharmacokinetics with bronchoalveolar lavage requires further studies. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov NCT03177720 (registered 6 June, 2017).


Anti-Bacterial Agents , Ciprofloxacin , Area Under Curve , Dose-Response Relationship, Drug , Feasibility Studies , Humans , Pharmaceutical Preparations
11.
Front Mol Biosci ; 8: 743403, 2021.
Article En | MEDLINE | ID: mdl-34805270

Endometrial cancer (EC) is the most common gynecological malignancy in resource-abundant countries. The majority of EC cases are estrogen dependent but the mechanisms of estrogen biosynthesis and oxidative metabolism and estrogen action are not completely understood. Here, we evaluated formation of estrogens in models of moderately and poorly differentiated EC: RL95-2 and KLE cells, respectively. Results revealed high expression of estrone-sulfate (E1-S) transporters (SLCO1A2, SLCO1B3, SLCO1C1, SLCO3A1, SLC10A6, SLC22A9), and increased E1-S uptake in KLE vs RL95-2 cells. In RL95-2 cells, higher levels of sulfatase and better metabolism of E1-S to E1 were confirmed compared to KLE cells. In KLE cells, disturbed balance in expression of HSD17B genes led to enhanced activation of E1 to E2, compared to RL95-2 cells. Additionally, increased CYP1B1 expression and down-regulation of genes encoding phase II metabolic enzymes: COMT, NQO1, NQO2, and GSTP1 suggested decreased detoxification of carcinogenic metabolites in KLE cells. Results indicate that in model cell lines of moderately and poorly differentiated EC, estrogens can be formed via the sulfatase pathway.

12.
J Antimicrob Chemother ; 76(11): 2914-2922, 2021 10 11.
Article En | MEDLINE | ID: mdl-34392352

BACKGROUND: Inadequate antibiotic exposure in cerebral infections might have detrimental effects on clinical outcome. Commonly, antibiotic concentrations within the CSF were used to estimate cerebral target levels. However, the actual pharmacological active unbound drug concentration beyond the blood-brain barrier is unknown. OBJECTIVES: To compare meropenem concentrations in blood, CSF and cerebral microdialysate of neurointensive care patients. PATIENTS AND METHODS: In 12 patients suffering subarachnoid haemorrhage, 2000 mg of meropenem was administered every 8 h due to an extracerebral infection. Meropenem concentrations were determined in blood, CSF and cerebral microdialysate at steady state (n = 11) and following single-dose administration (n = 5). RESULTS: At steady state, the free AUC0-8 was 233.2 ± 42.7 mg·h/L in plasma, 7.8 ± 1.9 mg·h/L in CSF and 26.6 ± 14.0 mg·h/L in brain tissue. The brain tissue penetration ratio (AUCbrain/AUCplasma) was 0.11 ± 0.06, which was more than 3 times higher than in CSF (0.03 ± 0.01), resulting in an AUCCSF/AUCbrain ratio of 0.41 ± 0.16 at steady state. After single-dose administration similar proportions were achieved (AUCbrain/AUCplasma = 0.09 ± 0.08; AUCCSF/AUCplasma = 0.02 ± 0.00). Brain tissue concentrations correlated well with CSF concentrations (R = 0.74, P < 0.001), but only moderately with plasma concentrations (R = 0.51, P < 0.001). Bactericidal thresholds were achieved in both plasma and brain tissue for MIC values ≤16 mg/L. In CSF, bactericidal effects were only reached for MIC values ≤1 mg/L. CONCLUSIONS: Meropenem achieves sufficient bactericidal concentrations for the most common bacterial strains of cerebral infections in both plasma and brain tissue, even in non-inflamed brain tissue. CSF concentrations would highly underestimate the target site activity of meropenem beyond the blood-brain barrier.


Anti-Bacterial Agents , Brain , Anti-Bacterial Agents/therapeutic use , Humans , Meropenem
13.
Int J Mol Sci ; 22(8)2021 Apr 07.
Article En | MEDLINE | ID: mdl-33917029

Endometrial cancer (EC) is associated with increased estrogen actions. Locally, estrogens can be formed from estrone-sulphate (E1-S) after cellular uptake by organic anion-transporting polypeptides (OATP) or organic anion transporters (OAT). Efflux of E1-S is enabled by ATP Binding Cassette transporters (ABC) and organic solute transporter (OST)αß. Currently, 19 E1-S transporters are known but their roles in EC are not yet understood. Here, we analysed levels of E1-S transporters in Ishikawa (premenopausal EC), HEC-1-A (postmenopausal EC), HIEEC (control) cell lines, in EC tissue, examined metabolism of steroid precursor E1-S, studied effects of OATPs' inhibition and gene-silencing on E1-S uptake, and assessed associations between transporters and histopathological data. Results revealed enhanced E1-S metabolism in HEC-1-A versus Ishikawa which could be explained by higher levels of OATPs in HEC-1-A versus Ishikawa, especially 6.3-fold up-regulation of OATP1B3 (SLCO1B3), as also confirmed by immunocytochemical staining and gene silencing studies, lower ABCG2 expression and higher levels of sulfatase (STS). In EC versus adjacent control tissue the highest differences were seen for ABCG2 and SLC51B (OSTß) which were 3.0-fold and 2.1-fold down-regulated, respectively. Immunohistochemistry confirmed lower levels of these two transporters in EC versus adjacent control tissue. Further analysis of histopathological data indicated that SLCO1B3 might be important for uptake of E1-S in tumours without lymphovascular invasion where it was 15.6-fold up-regulated as compared to adjacent control tissue. Our results clearly indicate the importance of E1-S transporters in EC pathophysiology and provide a base for further studies towards development of targeted treatment.


Endometrial Neoplasms/genetics , Endometrial Neoplasms/metabolism , Estrone/analogs & derivatives , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Age Factors , Biological Transport , Cell Line, Tumor , Endometrial Neoplasms/pathology , Estrone/metabolism , Female , Fluorescent Antibody Technique , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Multigene Family , Neoplasm Grading , Neoplasm Invasiveness , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasm Staging , Postmenopause , Solute Carrier Organic Anion Transporter Family Member 1B3/genetics , Solute Carrier Organic Anion Transporter Family Member 1B3/metabolism
14.
Clin Pharmacol Ther ; 109(3): 754-761, 2021 03.
Article En | MEDLINE | ID: mdl-32966590

The antiemetic and gastroprokinetic drug metoclopramide is a weak substrate of the blood-brain barrier (BBB) efflux transporter P-gp and displays central nervous system (CNS) side effects (i.e., extrapyramidal symptoms and tardive dyskinesia) caused by dopamine D2 receptor blockade in the basal ganglia. These side effects occur with a higher incidence in elderly people. We used positron emission tomography to assess the brain distribution of [11 C]metoclopramide in young (n = 11, 26 ± 3 years) and elderly (n = 7, 68 ± 9 years) healthy men both after administration of a microdose (9 ± 7 µg) and a microdose co-injected with a therapeutic dose of unlabeled metoclopramide (10 mg). For both doses, elderly subjects had a significantly higher total volume of distribution (VT ) of [11 C]metoclopramide in the basal ganglia than young subjects (microdose: +26%, therapeutic dose: +41%). Increases in VT (= K1 /k2 ) were caused by significant decreases in the transfer rate constant of [11 C]metoclopramide from brain into plasma (k2 , microdose: -18%, therapeutic dose: -30%), whereas the distributional clearance from plasma into brain (K1 ) remained unaltered. This reduction in the clearance of [11 C]metoclopramide (k2 ) from the brains of elderly subjects may be caused by an age-related decrease in the activity of P-gp at the BBB and may contribute to the higher incidence of CNS side effects of metoclopramide in the aged population. Our data suggest that an age-associated decrease in the clearance properties of the BBB may modulate the CNS effects or side effects of clinically used P-gp substrates.


Aging/metabolism , Antiemetics/pharmacokinetics , Brain/metabolism , Dopamine D2 Receptor Antagonists/pharmacokinetics , Metoclopramide/pharmacokinetics , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Adult , Age Factors , Aged , Antiemetics/administration & dosage , Antiemetics/adverse effects , Blood-Brain Barrier/metabolism , Brain/diagnostic imaging , Dopamine D2 Receptor Antagonists/administration & dosage , Dopamine D2 Receptor Antagonists/adverse effects , Healthy Volunteers , Humans , Injections, Intravenous , Male , Metabolic Clearance Rate , Metoclopramide/administration & dosage , Metoclopramide/adverse effects , Polymorphism, Single Nucleotide , Positron-Emission Tomography , Young Adult
15.
Phytomedicine ; 79: 153357, 2020 Dec.
Article En | MEDLINE | ID: mdl-33011631

BACKGROUND: Actaea racemosa L., also known as black cohosh, is a popular herb commonly used for the treatment of menopausal symptoms. Because of its purported estrogenic activity, black cohosh root extract (BCE) may trigger breast cancer growth. STUDY DESIGN/METHODS: The potential effects of standardized BCE and its main constituent actein on cellular growth rates and steroid hormone metabolism were investigated in estrogen receptor alpha positive (ERα+) MCF-7 and -negative (ERα-) MDA-MB-231 human breast cancer cells. Cell numbers were determined following incubation of both cell lines with the steroid hormone precursors dehydroepiandrosterone (DHEA) and estrone (E1) for 48 h, in the presence and absence of BCE or actein. Using a validated liquid chromatography-high resolution mass spectrometry assay, cell culture supernatants were simultaneously analyzed for the ten main steroids of the estrogen pathway. RESULTS: Inhibition of MCF-7 and MDA-MB-231 cell growth (up to 36.9%) was observed following treatment with BCE (1-25 µg/ml) or actein (1-50 µM). Incubation of MCF-7, but not of MDA-MB-231 cells, with DHEA and BCE caused a 20.9% reduction in DHEA-3-O-sulfate (DHEA-S) formation, leading to a concomitant increase in the androgens 4-androstene-3,17-dione (AD) and testosterone (T). Actein was shown to exert an even stronger inhibitory effect on DHEA-S formation in MCF-7 cells (up to 89.6%) and consequently resulted in 12- to 15-fold higher androgen levels compared with BCE. The formation of 17ß-estradiol (E2) and its glucuronidated and sulfated metabolites was not affected by BCE or actein after incubation with the estrogen precursor estrone (E1) in either cell line. CONCLUSIONS: The results of the present study demonstrated that actein and BCE do not promote breast cancer cell growth or influence estrogen levels. However, androgen formation was strongly stimulated by BCE and actein, which may contribute to their ameliorating effects on menopausal symptoms in women. Future studies monitoring the levels of AD and T upon BCE supplementation of patients are warranted to verify an association between BCE and endogenous androgen metabolism.


Antineoplastic Agents, Phytogenic/pharmacology , Breast Neoplasms/metabolism , Cimicifuga/chemistry , Plant Extracts/pharmacology , Steroids/metabolism , Androgens/metabolism , Antineoplastic Agents, Phytogenic/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Estradiol/metabolism , Estrogen Receptor alpha/metabolism , Female , Humans , MCF-7 Cells , Plant Extracts/chemistry , Plant Roots/chemistry , Saponins/pharmacology , Sulfotransferases/metabolism , Triterpenes/pharmacology
16.
Oncol Lett ; 20(5): 252, 2020 Nov.
Article En | MEDLINE | ID: mdl-32994815

Genetic variations in the organic-anion-transporting polypeptide (OATP)-encoding solute carrier of organic anions (SLCO) genes can promote cancer development and progression. The overexpression of solute carrier organic anion transporter family member 4A1 (OATP4A1), a transporter for steroid hormones, prostaglandins, and bile acids, has been previously associated with tumor recurrence and progression in colorectal cancer (CRC). Therefore, the present study aimed to investigate the association between 2 frequent single nucleotide polymorphisms (SNPs) in SLCO4A1 (rs34419428, R70Q; rs1047099G, V78I) and CRC predisposition. Following restriction fragment length polymorphism-PCR analysis in 178 patients with CRC [Union for International Cancer Control (UICC) stage I/II] and 65 healthy controls, no significant difference was observed in allele frequency and the number of heterozygous/homozygous individuals between the groups. Notably, the R70Q minor allele was identified to be associated with the V78I minor allele in the genome. Comparing of the individual genotypes of CRC patients to clinical data, including sex, UICC-stage and relapse revealed no increased risk for CRC. In addition, the OATP4A1 immunoreactivity assay in paraffin-embedded CRC and adjacent non-tumorous mucosa sections, examined using quantitative microscopy image analysis, did not reveal any association with these polymorphisms. No significant differences were observed in the expression levels, localization, and sodium fluorescein transport capacity among the OATP4A1 variants, which was studied using functional assays in Sf9-insect and A431 tumor cells overexpressing the 2 single and a double mutant OATP4A1 SNP variants. These results suggested that the 2 most frequent polymorphisms located in the first intracellular loop of OATP4A1 do not associate with CRC predisposition and tumor recurrence. They are unlikely to affect the outcome of CRC in patients.

17.
Ann Intensive Care ; 10(1): 48, 2020 Apr 22.
Article En | MEDLINE | ID: mdl-32323030

BACKGROUND: Infection and sepsis are a main cause of acute-on-chronic liver failure (ACLF). Adequate dosing of antimicrobial therapy is of central importance to improve outcome. Liver failure may alter antibiotic drug concentrations via changes of drug distribution and elimination. We studied the pharmacokinetics of meropenem in critically ill patients with ACLF during continuous veno-venous hemodialysis (CVVHD) and compared it to critically ill patients without concomitant liver failure (NLF). METHODS: In this prospective cohort study, patients received meropenem 1 g tid short-term infusion (SI). Meropenem serum samples were analyzed by high-performance liquid chromatography. A population pharmacokinetic analysis was performed followed by Monte Carlo simulations of (A) meropenem 1 g tid SI, (B) 2 g loading plus 1 g prolonged infusion tid (C) 2 g tid SI, and (D) 2 g loading and continuous infusion of 3 g/day on days 1 and 7. Probability of target attainment (PTA) was assessed for 4× the epidemiological cut-off values for Enterobacterales (4 × 0.25 mg/L) and Pseudomonas spp. (4 × 2 mg/L). RESULTS: Nineteen patients were included in this study. Of these, 8 patients suffered from ACLF. A two-compartment model with linear clearance from the central compartment described meropenem pharmacokinetics. The peripheral volume of distribution (V2) was significantly higher in ACLF compared to NLF (38.6L versus 19.7L, p = .05). PTA for Enterobacterales was achieved in 100% for all dosing regimens. PTA for Pseudomonas spp. in ACLF on day 1/7 was: A: 18%/80%, B: 94%/88%, C: 85%/98% D: 100%/100% and NLF: A: 48%/65%, B: 91%/83%, C: 91%/93%, D: 100%/100%. CONCLUSION: ALCF patients receiving CVVHD had a higher V2 and may require a higher loading dose of meropenem. For Pseudomonas, high doses or continuous infusion are required to reach PTA in ACLF patients.

18.
Int J Oncol ; 56(4): 1034-1044, 2020 04.
Article En | MEDLINE | ID: mdl-32319559

Metastatic cancer cells cross endothelial barriers and travel through the blood or lymphatic fluid to pre­metastatic niches, leading to their colonisation. 'S' stereoisomer 12S­hydroxy­5Z,8Z,10E,14Z­eicosatetraenoic acid [12(S)­HETE] is secreted by a variety of cancer cell types and has been indicated to open up these barriers. In the present study, another aspect of the endothelial unlocking mechanism was elucidated. This was achieved by investigating 12(S)­HETE­treated lymph endothelial cells (LECs) with regard to their expression and mutual interaction with v­rel avian reticuloendotheliosis viral oncogene homolog A (RELA), intercellular adhesion molecule 1, SRY­box transcription factor 18 (SOX18), prospero homeobox 1 (PROX1) and focal adhesion kinase (FAK). These key players of LEC retraction, which is a prerequisite for cancer cell transit into vasculature, were analysed using western blot analysis, reverse transcription­quantitative PCR and transfection with small interfering (si)RNA. The silencing of a combination of these signalling and executing molecules using siRNA, or pharmacological inhibition with defactinib and Bay11­7082, extended the mono­culture experiments to co­culture settings using HCT116 colon cancer cell spheroids that were placed on top of LEC monolayers to measure their retraction using the validated 'circular chemorepellent­induced defect' assay. 12(S)­HETE was indicated to induce the upregulation of the RELA/SOX18 feedback loop causing the subsequent phosphorylation of FAK, which fed back to RELA/SOX18. Therefore, 12(S)­HETE was demonstrated to be associated with circuits involving RELA, SOX18 and FAK, which transduced signals causing the retraction of LECs. The FAK­inhibitor defactinib and the NF­κB inhibitor Bay11­7082 attenuated LEC retraction additively, which was similar to the suppression of FAK and PROX1 (the target of SOX18) by the transfection of respective siRNAs. FAK is an effector molecule at the distal end of a pro­metastatic signalling cascade. Therefore, targeting the endothelial­specific activity of FAK through the pathway demonstrated herein may provide a potential therapeutic method to combat cancer dissemination via vascular routes.


Cell Movement , Endothelium, Lymphatic/metabolism , Focal Adhesion Kinase 1/metabolism , Hydroxyeicosatetraenoic Acids/pharmacology , Neoplasms/pathology , SOXF Transcription Factors/metabolism , Transcription Factor RelA/metabolism , Cell Line, Tumor , Endothelium, Lymphatic/drug effects , Endothelium, Lymphatic/pathology , Feedback, Physiological , Focal Adhesion Kinase 1/genetics , Humans , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Neoplasm Metastasis , Neoplasms/drug therapy , Neoplasms/metabolism , SOXF Transcription Factors/genetics , Signal Transduction , Transcription Factor RelA/genetics
19.
Data Brief ; 29: 105309, 2020 Apr.
Article En | MEDLINE | ID: mdl-32154346

Bioavailability of nutrients is highly diverse and depends on a variety of endogenous and exogenous factors in humans. This data article reports on the plasma response of 10 human subjects (5 females, 5 males) to a single dose of a multivitamin drink within 6h (blood taken after 1, 2, 4, and 6h). Nutrients, which were considered in the assessment, were folate (Radioimmuno Assay), vitamin B12 (Radioimmuno Assay) and resveratrol and its plasma metabolites resveratrol-3-O-glucuronide (R3G), resveratrol-4'-O-glucuronide (R4G), resveratrol-3-O-sulfate (R3S) and resveratrol-3-O-4'-O-disulfate (RD, all HPLC). Biological outcome measures were malondialdehyde (MDA, HPLC) and Ferric Reducing ability potential (FRAP, Microplate reader). Mean plasma concentration increased over time significantly for folate (p < 0.05, maximum concentration (Tmax) after 2h), R3G, R4G, R3S (all p < 0.05, Tmax after 1h), RD (p < 0.05, Tmax after 2h) as well as MDA, which decreased (p < 0.05, Tmax after 2h). No significant change was observed for vitamin B12 and FRAP. Within this mean development, individual changes of participants were highly diverse such as for folate from +42 to +422%, for MDA from -49 to +30% or vitamin B12 from -4 to +33%. For R4G 4 out of 10 subjects showed even no increase in plasma at all. For R4G plasma response ranged from 0 to 36 ng/ml, for R3G from 0 to 53 ng/ml or for R4S from 62 to 265 ng/ml. There was no gender difference regarding the plasma response.

20.
Int J Cancer ; 147(6): 1680-1693, 2020 09 15.
Article En | MEDLINE | ID: mdl-32064608

Ponatinib is a small molecule multi-tyrosine kinase inhibitor clinically approved for anticancer therapy. Molecular mechanisms by which cancer cells develop resistance against ponatinib are currently poorly understood. Likewise, intracellular drug dynamics, as well as potential microenvironmental factors affecting the activity of this compound are unknown. Cell/molecular biological and analytical chemistry methods were applied to investigate uptake kinetics/subcellular distribution, the role of lipid droplets (LDs) and lipoid microenvironment compartments in responsiveness of FGFR1-driven lung cancer cells toward ponatinib. Selection of lung cancer cells for acquired ponatinib resistance resulted in elevated intracellular lipid levels. Uncovering intrinsic ponatinib fluorescence enabled dissection of drug uptake/retention kinetics in vitro as well as in mouse tissue cryosections, and revealed selective drug accumulation in LDs of cancer cells. Pharmacological LD upmodulation or downmodulation indicated that the extent of LD formation and consequent ponatinib incorporation negatively correlated with anticancer drug efficacy. Co-culturing with adipocytes decreased ponatinib levels and fostered survival of cancer cells. Ponatinib-selected cancer cells exhibited increased LD levels and enhanced ponatinib deposition into this organelle. Our findings demonstrate intracellular deposition of the clinically approved anticancer compound ponatinib into LDs. Furthermore, increased LD biogenesis was identified as adaptive cancer cell-defense mechanism via direct drug scavenging. Together, this suggests that LDs represent an underestimated organelle influencing intracellular pharmacokinetics and activity of anticancer tyrosine kinase inhibitors. Targeting LD integrity might constitute a strategy to enhance the activity not only of ponatinib, but also other clinically approved, lipophilic anticancer therapeutics.


Drug Resistance, Neoplasm , Imidazoles/pharmacokinetics , Lipid Droplets/metabolism , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacokinetics , Pyridazines/pharmacokinetics , Animals , Cell Line, Tumor , Cell Proliferation , Humans , Imidazoles/therapeutic use , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Protein Kinase Inhibitors/therapeutic use , Pyridazines/therapeutic use , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/genetics , Signal Transduction , Tumor Microenvironment , Xenograft Model Antitumor Assays
...