Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Tree Physiol ; 43(1): 57-74, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36106799

ABSTRACT

Global warming affects the abiotic and biotic growth environment of plants, including the spread of fungal diseases such as Dutch elm disease (DED). Dutch elm disease-resistance of different Ulmus species varies, but how this is reflected in leaf-level physiological pathogen responses has not been investigated. We studied the impacts of mechanical injury alone and mechanical injury plus inoculation with the DED-causing pathogens Ophiostoma novo-ulmi subsp. novo-ulmi and O. novo-ulmi subsp. americana on Ulmus glabra, a more vulnerable species, and U. laevis, a more resistant species. Plant stress responses were evaluated for 12 days after stress application by monitoring leaf net CO2 assimilation rate (A), stomatal conductance (gs), ratio of ambient to intercellular CO2 concentration (Ca/Ci) and intrinsic water-use efficiency (A/gs), and by measuring biogenic volatile (VOC) release by plant leaves. In U. glabra and U. laevis, A was not affected by time, stressors or their interaction. Only in U. glabra, gs and Ca/Ci decreased in time, yet recovered by the end of the experiment. Although the emission compositions were affected in both species, the stress treatments enhanced VOC emission rates only in U. laevis. In this species, mechanical injury especially when combined with the pathogens increased the emission of lipoxygenase pathway volatiles and dimethylallyl diphosphate and geranyl diphosphate pathway volatiles. In conclusion, the more resistant species U. laevis had a more stable photosynthesis, but stronger pathogen-elicited volatile response, especially after inoculation by O. novo-ulmi subsp. novo-ulmi. Thus, stronger activation of defenses might underlay higher DED-resistance in this species.


Subject(s)
Ophiostoma , Ulmus , Volatile Organic Compounds , Ulmus/physiology , Carbon Dioxide , Plant Diseases/microbiology , Ophiostoma/physiology , Photosynthesis
2.
Insects ; 12(5)2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33946656

ABSTRACT

Potential Dutch elm disease vector beetle species were caught with pheromone bottle traps and handpicked in 2019: in total, seven species and 261 specimens were collected. The most common was Scolytus triarmatus, but by percent, the incidence of Ophiostoma novo-ulmi was highest in Scolytus scolytus, followed by Xyleborinus saxesenii and S. triarmatus. We analysed the beetles' DNA using PacBio sequencing to determine vector beetles of Ophiostoma novo-ulmi. Ophiostoma novo-ulmi was found on six out of seven analysed beetle species: Scolytus scolytus, S. triarmatus, S. multistriatus, S. laevis, Xyleborinus saxesenii and Xyleborus dispar. The last two beetles were detected as vectors for Ophiostoma novo-ulmi for the first time. Previous knowledge on the spread of beetles is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...