Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Infect Microbiol ; 12: 1028899, 2022.
Article in English | MEDLINE | ID: mdl-36304936

ABSTRACT

Inflammatory bowel diseases (IBDs) have been classified as modern refractory diseases. However, safe, well-tolerated, and effective treatments for IBDs are still lacking. Therefore, there is an urgent need to develop novel therapeutic targets with fewer undesirable adverse reactions. A growing body of research has shown that infection with live helminths or exposure to defined helminth-derived components can downregulate pathogenic inflammation due to their immunoregulatory ability. Here we were to explore the protective role of Schistosoma japonicum eggs on murine experimental colitis caused by trinitrobenzene sulfonic acid (TNBS) and the underlying mechanism. Frequencies of splenic Treg and Th17 cells were detected by flow cytometry. Protein and mRNA expressions of Foxp3 and RORγt were investigated by Western Blot and quantitative real-time polymerase chain reaction (qPCR), respectively. Concentrations of transforming growth factor-beta1 (TGF-ß1), interleukin-10 (IL-10) and IL-17A were assessed with ELISA. Expression levels of genes related to glycolipid metabolism were measured with qPCR. The results showed that pre-exposure to S. japonicum eggs contributed to the relief of colitis in the TNBS model, evidenced by improved body weight loss, reversing spleen enlargement and colon shortening, and decreased histology scores. Compared with the TNBS group, the TNBS+Egg group had increased Treg immune response, accompanied by decreased Th17 immune response, leading to the reconstruction of Treg/Th17 balance. In addition, a ratio of Treg/Th17 was correlated negatively with the histological scores in the experiment groups. Furthermore, the regulation of Treg/Th17 balance by S. japonicum eggs was associated with inhibiting the glycolysis pathway and lipogenesis, along with promoting fatty acid oxidation in the TNBS+Egg group. These data indicate that S. japonicum eggs have a protective effect against TNBS-induced colitis, which is related to restoring Treg/Th17 balance and regulating glucose and lipid metabolism.


Subject(s)
Colitis , Schistosoma japonicum , Mice , Animals , Trinitrobenzenesulfonic Acid/toxicity , Th17 Cells , T-Lymphocytes, Regulatory , Colitis/chemically induced , Colitis/prevention & control , Lipid Metabolism , Glycolipids
2.
Infect Immun ; 89(5)2021 04 16.
Article in English | MEDLINE | ID: mdl-33558327

ABSTRACT

Trichinellosis is one of most neglected foodborne zoonoses worldwide. During Trichinella spiralis infection, the intestinal immune response is the first line of defense and plays a vital role in the host's resistance. Previous studies indicate that purinergic P2X7 receptor (P2X7R) and pyrin domain-containing protein 3 (NLRP3) inflammasome are involved in the intestinal immune response in T. spiralis infection. However, the precise role of P2X7R and its effect on NLRP3 remains largely underdetermined. In this study, we aimed to investigate the role of P2X7R in the activation of NLRP3 in macrophages during the intestinal immune response against T. spiralis We found that T. spiralis infection upregulated expression of P2X7R and activation of NLRP3 in macrophages in mice. In vivo, P2X7R deficiency resulted in increased intestinal adult and muscle larval burdens, along with decreased expression of NLRP3/interleukin-1ß (IL-1ß) in macrophages from the infected mice with T. spiralis In In vitro experiments, P2X7R blockade inhibited activation of NLRP3/IL-1ß via NF-κB and thus reduced the capacity of macrophages to kill newborn larvae of T. spiralis These results indicate that P2X7R mediates the elimination of T. spiralis by activating the NF-κB/NLRP3/IL-1ß pathway in macrophages. Our findings contribute to the understanding of the intestinal immune mechanism of T. spiralis infection.


Subject(s)
Interleukin-1beta/metabolism , Macrophages/immunology , Macrophages/metabolism , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Receptors, Purinergic P2X7/metabolism , Signal Transduction , Trichinella spiralis , Animals , Disease Models, Animal , Gene Expression , Intestinal Mucosa/metabolism , Intestinal Mucosa/parasitology , Intestinal Mucosa/pathology , Mice , Mice, Knockout , Parasite Load , Purinergic P2X Receptor Antagonists/pharmacology , Receptors, Purinergic P2X7/genetics , Trichinellosis/immunology , Trichinellosis/metabolism , Trichinellosis/parasitology
3.
Parasite Immunol ; 42(12): e12785, 2020 12.
Article in English | MEDLINE | ID: mdl-32786078

ABSTRACT

AIMS: The Schistosoma japonicum (S japonicum)-infected ApoE gene deficiency (ApoE-/- ) mice were used to determine effect of ApoE on hepatic immunopathology. METHODS: Murine activities and appetite, body weight, and ratio of liver weight to its body weight (Hepatic mass index, HMI) were observed. Worm load and liver egg burden were evaluated as the infection intensity. Number and size of liver egg granulomas and serum levels of alanine aminotransferase (ALT) were investigated. We analysed hepatic fibrosis by markers of fibrosis in tissue, detected hepatic Th17 and Treg frequency by flow cytometry, and measured hepatic expressions of RORγt, Foxp3, IL-17A and TGF-ß1 via qPCR. Lipid metabolism was determined by serum levels of cholesterol (TC) and triglyceride (TG) as well as hepatic Oil red O staining. RESULTS: In the infected ApoE-/- mice, the increased infection intensity aggravated the hepatic immunopathology (evidenced by increased HMI, elevated egg granulomas and increased ALT levels) and fibrosis (increased hepatic collagen deposition). ApoE deficiency resulted in significantly elevated ratio of hepatic Th17/Treg and higher serum levels of TC and TG, along with higher level of hepatic Oil red O staining. CONCLUSIONS: ApoE deficiency promotes hepatic pathology and fibrosis by exacerbating Th17/Treg imbalance and altering lipid metabolism in murine schistosomiasis japonica.


Subject(s)
Apolipoproteins E/deficiency , Schistosomiasis japonica/immunology , Schistosomiasis japonica/pathology , T-Lymphocytes, Regulatory/pathology , Th17 Cells/pathology , Animals , Apolipoproteins E/genetics , Female , Lipid Metabolism , Liver Cirrhosis/parasitology , Liver Cirrhosis/pathology , Mice , Parasite Load , Schistosoma japonicum/pathogenicity , Schistosomiasis japonica/metabolism , Schistosomiasis japonica/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...