Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 42
2.
Science ; 379(6639): 1332-1335, 2023 Mar 31.
Article En | MEDLINE | ID: mdl-36996200

The Australian continent contributes substantially to the year-to-year variability of the global terrestrial carbon dioxide (CO2) sink. However, the scarcity of in situ observations in remote areas prevents the deciphering of processes that force the CO2 flux variability. In this study, by examining atmospheric CO2 measurements from satellites in the period 2009-2018, we find recurrent end-of-dry-season CO2 pulses over the Australian continent. These pulses largely control the year-to-year variability of Australia's CO2 balance. They cause two to three times larger seasonal variations compared with previous top-down inversions and bottom-up estimates. The pulses occur shortly after the onset of rainfall and are driven by enhanced soil respiration preceding photosynthetic uptake in Australia's semiarid regions. The suggested continental-scale relevance of soil-rewetting processes has substantial implications for our understanding and modeling of global climate-carbon cycle feedbacks.

3.
Nature ; 615(7954): 848-853, 2023 03.
Article En | MEDLINE | ID: mdl-36813960

Global net land carbon uptake or net biome production (NBP) has increased during recent decades1. Whether its temporal variability and autocorrelation have changed during this period, however, remains elusive, even though an increase in both could indicate an increased potential for a destabilized carbon sink2,3. Here, we investigate the trends and controls of net terrestrial carbon uptake and its temporal variability and autocorrelation from 1981 to 2018 using two atmospheric-inversion models, the amplitude of the seasonal cycle of atmospheric CO2 concentration derived from nine monitoring stations distributed across the Pacific Ocean and dynamic global vegetation models. We find that annual NBP and its interdecadal variability increased globally whereas temporal autocorrelation decreased. We observe a separation of regions characterized by increasingly variable NBP, associated with warm regions and increasingly variable temperatures, lower and weaker positive trends in NBP and regions where NBP became stronger and less variable. Plant species richness presented a concave-down parabolic spatial relationship with NBP and its variability at the global scale whereas nitrogen deposition generally increased NBP. Increasing temperature and its increasing variability appear as the most important drivers of declining and increasingly variable NBP. Our results show increasing variability of NBP regionally that can be mostly attributed to climate change and that may point to destabilization of the coupled carbon-climate system.


Carbon Sequestration , Carbon , Climate Change , Ecosystem , Geographic Mapping , Plants , Carbon/analysis , Carbon/metabolism , Carbon Dioxide/analysis , Carbon Dioxide/metabolism , Carbon Sequestration/physiology , Seasons , Atmosphere/chemistry , Pacific Ocean , Temperature , Nitrogen/metabolism , Plants/classification , Plants/metabolism , Risk Assessment
4.
Nat Commun ; 13(1): 5374, 2022 09 13.
Article En | MEDLINE | ID: mdl-36100606

Carbon budget accounting relies heavily on Food and Agriculture Organization land-use data reported by governments. Here we develop a new land-use and cover-change database for China, finding that differing historical survey methods biased China's reported data causing large errors in Food and Agriculture Organization databases. Land ecosystem model simulations driven with the new data reveal a strong carbon sink of 8.9 ± 0.8 Pg carbon from 1980 to 2019 in China, which was not captured in Food and Agriculture Organization data-based estimations due to biased land-use and cover-change signals. The land-use and cover-change in China, characterized by a rapid forest expansion from 1980 to 2019, contributed to nearly 44% of the national terrestrial carbon sink. In contrast, climate changes (22.3%), increasing nitrogen deposition (12.9%), and rising carbon dioxide (8.1%) are less important contributors. This indicates that previous studies have greatly underestimated the impact of land-use and cover-change on the terrestrial carbon balance of China. This study underlines the importance of reliable land-use and cover-change databases in global carbon budget accounting.


Carbon Sequestration , Ecosystem , Carbon Dioxide/analysis , China , Forests
5.
Science ; 373(6562): eabg7484, 2021 Sep 24.
Article En | MEDLINE | ID: mdl-34554812

Our study suggests that the global CO2 fertilization effect (CFE) on vegetation photosynthesis has declined during the past four decades. The Comments suggest that the temporal inconsistency in AVHRR data and the attribution method undermine the results' robustness. Here, we provide additional evidence that these arguments did not affect our finding and that the global decline in CFE is robust.


Carbon Dioxide , Photosynthesis , Fertilization
6.
Glob Chang Biol ; 27(14): 3336-3349, 2021 07.
Article En | MEDLINE | ID: mdl-33910268

The rising atmospheric CO2 concentration leads to a CO2 fertilization effect on plants-that is, increased photosynthetic uptake of CO2 by leaves and enhanced water-use efficiency (WUE). Yet, the resulting net impact of CO2 fertilization on plant growth and soil moisture (SM) savings at large scale is poorly understood. Drylands provide a natural experimental setting to detect the CO2 fertilization effect on plant growth since foliage amount, plant water-use and photosynthesis are all tightly coupled in water-limited ecosystems. A long-term change in the response of leaf area index (LAI, a measure of foliage amount) to changes in SM is likely to stem from changing water demand of primary productivity in water-limited ecosystems and is a proxy for changes in WUE. Using 34-year satellite observations of LAI and SM over tropical and subtropical drylands, we identify that a 1% increment in SM leads to 0.15% (±0.008, 95% confidence interval) and 0.51% (±0.01, 95% confidence interval) increments in LAI during 1982-1998 and 1999-2015, respectively. The increasing response of LAI to SM has contributed 7.2% (±3.0%, 95% confidence interval) to total dryland greening during 1999-2015 compared to 1982-1998. The increasing response of LAI to SM is consistent with the CO2 fertilization effect on WUE in water-limited ecosystems, indicating that a given amount of SM has sustained greater amounts of photosynthetic foliage over time. The LAI responses to changes in SM from seven dynamic global vegetation models are not always consistent with observations, highlighting the need for improved process knowledge of terrestrial ecosystem responses to rising atmospheric CO2 concentration.


Carbon Dioxide , Ecosystem , Carbon Dioxide/analysis , Fertilization , Photosynthesis , Soil
7.
Nat Food ; 2(9): 724-732, 2021 Sep.
Article En | MEDLINE | ID: mdl-37117472

Agriculture and land use are major sources of greenhouse gas (GHG) emissions but previous estimates were either highly aggregate or provided spatial details for subsectors obtained via different methodologies. Using a model-data integration approach that ensures full consistency between subsectors, we provide spatially explicit estimates of production- and consumption-based GHG emissions worldwide from plant- and animal-based human food in circa 2010. Global GHG emissions from the production of food were found to be 17,318 ± 1,675 TgCO2eq yr-1, of which 57% corresponds to the production of animal-based food (including livestock feed), 29% to plant-based foods and 14% to other utilizations. Farmland management and land-use change represented major shares of total emissions (38% and 29%, respectively), whereas rice and beef were the largest contributing plant- and animal-based commodities (12% and 25%, respectively), and South and Southeast Asia and South America were the largest emitters of production-based GHGs.

8.
Nat Food ; 2(11): 873-885, 2021 11.
Article En | MEDLINE | ID: mdl-37117503

Potential climate-related impacts on future crop yield are a major societal concern. Previous projections of the Agricultural Model Intercomparison and Improvement Project's Global Gridded Crop Model Intercomparison based on the Coupled Model Intercomparison Project Phase 5 identified substantial climate impacts on all major crops, but associated uncertainties were substantial. Here we report new twenty-first-century projections using ensembles of latest-generation crop and climate models. Results suggest markedly more pessimistic yield responses for maize, soybean and rice compared to the original ensemble. Mean end-of-century maize productivity is shifted from +5% to -6% (SSP126) and from +1% to -24% (SSP585)-explained by warmer climate projections and improved crop model sensitivities. In contrast, wheat shows stronger gains (+9% shifted to +18%, SSP585), linked to higher CO2 concentrations and expanded high-latitude gains. The 'emergence' of climate impacts consistently occurs earlier in the new projections-before 2040 for several main producing regions. While future yield estimates remain uncertain, these results suggest that major breadbasket regions will face distinct anthropogenic climatic risks sooner than previously anticipated.

9.
Science ; 370(6522): 1295-1300, 2020 12 11.
Article En | MEDLINE | ID: mdl-33303610

The enhanced vegetation productivity driven by increased concentrations of carbon dioxide (CO2) [i.e., the CO2 fertilization effect (CFE)] sustains an important negative feedback on climate warming, but the temporal dynamics of CFE remain unclear. Using multiple long-term satellite- and ground-based datasets, we showed that global CFE has declined across most terrestrial regions of the globe from 1982 to 2015, correlating well with changing nutrient concentrations and availability of soil water. Current carbon cycle models also demonstrate a declining CFE trend, albeit one substantially weaker than that from the global observations. This declining trend in the forcing of terrestrial carbon sinks by increasing amounts of atmospheric CO2 implies a weakening negative feedback on the climatic system and increased societal dependence on future strategies to mitigate climate warming.


Carbon Cycle , Carbon Dioxide/metabolism , Global Warming , Photosynthesis , Atmosphere/chemistry , Carbon Dioxide/analysis
10.
Global Biogeochem Cycles ; 34(12): e2020GB006613, 2020 Dec.
Article En | MEDLINE | ID: mdl-33380772

Variability in climate exerts a strong influence on vegetation productivity (gross primary productivity; GPP), and therefore has a large impact on the land carbon sink. However, no direct observations of global GPP exist, and estimates rely on models that are constrained by observations at various spatial and temporal scales. Here, we assess the consistency in GPP from global products which extend for more than three decades; two observation-based approaches, the upscaling of FLUXNET site observations (FLUXCOM) and a remote sensing derived light use efficiency model (RS-LUE), and from a suite of terrestrial biosphere models (TRENDYv6). At local scales, we find high correlations in annual GPP among the products, with exceptions in tropical and high northern latitudes. On longer time scales, the products agree on the direction of trends over 58% of the land, with large increases across northern latitudes driven by warming trends. Further, tropical regions exhibit the largest interannual variability in GPP, with both rainforests and savannas contributing substantially. Variability in savanna GPP is likely predominantly driven by water availability, although temperature could play a role via soil moisture-atmosphere feedbacks. There is, however, no consensus on the magnitude and driver of variability of tropical forests, which suggest uncertainties in process representations and underlying observations remain. These results emphasize the need for more direct long-term observations of GPP along with an extension of in situ networks in underrepresented regions (e.g., tropical forests). Such capabilities would support efforts to better validate relevant processes in models, to more accurately estimate GPP.

11.
Glob Chang Biol ; 26(8): 4462-4477, 2020 08.
Article En | MEDLINE | ID: mdl-32415896

Changing amplitude of the seasonal cycle of atmospheric CO2 (SCA) in the northern hemisphere is an emerging carbon cycle property. Mauna Loa (MLO) station (20°N, 156°W), which has the longest continuous northern hemisphere CO2 record, shows an increasing SCA before the 1980s (p < .01), followed by no significant change thereafter. We analyzed the potential driving factors of SCA slowing-down, with an ensemble of dynamic global vegetation models (DGVMs) coupled with an atmospheric transport model. We found that slowing-down of SCA at MLO is primarily explained by response of net biome productivity (NBP) to climate change, and by changes in atmospheric circulations. Through NBP, climate change increases SCA at MLO before the 1980s and decreases it afterwards. The effect of climate change on the slowing-down of SCA at MLO is mainly exerted by intensified drought stress acting to offset the acceleration driven by CO2 fertilization. This challenges the view that CO2 fertilization is the dominant cause of emergent SCA trends at northern sites south of 40°N. The contribution of agricultural intensification on the deceleration of SCA at MLO was elusive according to land-atmosphere CO2 flux estimated by DGVMs and atmospheric inversions. Our results also show the necessity to adequately account for changing circulation patterns in understanding carbon cycle dynamics observed from atmospheric observations and in using these observations to benchmark DGVMs.


Carbon Cycle , Carbon Dioxide , Animals , Atmosphere , Climate Change , Ecosystem , Seasons
12.
Glob Chang Biol ; 26(3): 1474-1484, 2020 03.
Article En | MEDLINE | ID: mdl-31560157

Plants use only a fraction of their photosynthetically derived carbon for biomass production (BP). The biomass production efficiency (BPE), defined as the ratio of BP to photosynthesis, and its variation across and within vegetation types is poorly understood, which hinders our capacity to accurately estimate carbon turnover times and carbon sinks. Here, we present a new global estimation of BPE obtained by combining field measurements from 113 sites with 14 carbon cycle models. Our best estimate of global BPE is 0.41 ± 0.05, excluding cropland. The largest BPE is found in boreal forests (0.48 ± 0.06) and the lowest in tropical forests (0.40 ± 0.04). Carbon cycle models overestimate BPE, although models with carbon-nitrogen interactions tend to be more realistic. Using observation-based estimates of global photosynthesis, we quantify the global BP of non-cropland ecosystems of 41 ± 6 Pg C/year. This flux is less than net primary production as it does not contain carbon allocated to symbionts, used for exudates or volatile carbon compound emissions to the atmosphere. Our study reveals a positive bias of 24 ± 11% in the model-estimated BP (10 of 14 models). When correcting models for this bias while leaving modeled carbon turnover times unchanged, we found that the global ecosystem carbon storage change during the last century is decreased by 67% (or 58 Pg C).


Ecosystem , Trees , Biomass , Carbon , Carbon Cycle , Carbon Dioxide , Carbon Sequestration
13.
Glob Chang Biol ; 26(3): 1068-1084, 2020 03.
Article En | MEDLINE | ID: mdl-31828914

Robust estimates of CO2 budget, CO2 exchanged between the atmosphere and terrestrial biosphere, are necessary to better understand the role of the terrestrial biosphere in mitigating anthropogenic CO2 emissions. Over the past decade, this field of research has advanced through understanding of the differences and similarities of two fundamentally different approaches: "top-down" atmospheric inversions and "bottom-up" biosphere models. Since the first studies were undertaken, these approaches have shown an increasing level of agreement, but disagreements in some regions still persist, in part because they do not estimate the same quantity of atmosphere-biosphere CO2 exchange. Here, we conducted a thorough comparison of CO2 budgets at multiple scales and from multiple methods to assess the current state of the science in estimating CO2 budgets. Our set of atmospheric inversions and biosphere models, which were adjusted for a consistent flux definition, showed a high level of agreement for global and hemispheric CO2 budgets in the 2000s. Regionally, improved agreement in CO2 budgets was notable for North America and Southeast Asia. However, large gaps between the two methods remained in East Asia and South America. In other regions, Europe, boreal Asia, Africa, South Asia, and Oceania, it was difficult to determine whether those regions act as a net sink or source because of the large spread in estimates from atmospheric inversions. These results highlight two research directions to improve the robustness of CO2 budgets: (a) to increase representation of processes in biosphere models that could contribute to fill the budget gaps, such as forest regrowth and forest degradation; and (b) to reduce sink-source compensation between regions (dipoles) in atmospheric inversion so that their estimates become more comparable. Advancements on both research areas will increase the level of agreement between the top-down and bottom-up approaches and yield more robust knowledge of regional CO2 budgets.


Carbon Dioxide , Ecosystem , Africa , Asia , Europe , North America , South America
14.
Sci Rep ; 9(1): 14680, 2019 10 11.
Article En | MEDLINE | ID: mdl-31604972

Terrestrial ecosystems carbon and water cycles are tightly coupled through photosynthesis and evapotranspiration processes. The ratios of carbon stored to carbon uptake and water loss to carbon gain are key ecophysiological indicators essential to assess the magnitude and response of the terrestrial plant to the changing climate. Here, we use estimates from 10 terrestrial ecosystem models to quantify the impacts of climate, atmospheric CO2 concentration, and nitrogen (N) deposition on water use efficiency (WUE), and carbon use efficiency (CUE). We find that across models, WUE increases over the 20th Century particularly due to CO2 fertilization and N deposition and compares favorably to experimental studies. Also, the results show a decrease in WUE with climate for the last 3 decades, in contrasts with up-scaled flux observations that demonstrate a constant WUE. Modeled WUE responds minimally to climate with modeled CUE exhibiting no clear trend across space and time. The divergence between simulated and observationally-constrained WUE and CUE is driven by modeled NPP and autotrophic respiration, nitrogen cycle, carbon allocation, and soil moisture dynamics in current ecosystem models. We suggest that carbon-modeling community needs to reexamine stomatal conductance schemes and the soil-vegetation interactions for more robust modeling of carbon and water cycles.

15.
Sci Adv ; 5(8): eaax1396, 2019 08.
Article En | MEDLINE | ID: mdl-31453338

Atmospheric vapor pressure deficit (VPD) is a critical variable in determining plant photosynthesis. Synthesis of four global climate datasets reveals a sharp increase of VPD after the late 1990s. In response, the vegetation greening trend indicated by a satellite-derived vegetation index (GIMMS3g), which was evident before the late 1990s, was subsequently stalled or reversed. Terrestrial gross primary production derived from two satellite-based models (revised EC-LUE and MODIS) exhibits persistent and widespread decreases after the late 1990s due to increased VPD, which offset the positive CO2 fertilization effect. Six Earth system models have consistently projected continuous increases of VPD throughout the current century. Our results highlight that the impacts of VPD on vegetation growth should be adequately considered to assess ecosystem responses to future climate conditions.


Environmental Monitoring/methods , Plant Development/physiology , Satellite Imagery/methods , Steam/analysis , Vapor Pressure , Climate , Climate Change , Models, Biological , Plants
16.
Glob Chang Biol ; 25(6): 2137-2151, 2019 06.
Article En | MEDLINE | ID: mdl-30830699

South and Southeast Asia (SSEA) has been a hotspot for land use and land cover change (LULCC) in the past few decades. The identification and quantification of the drivers of LULCC are crucial for improving our understanding of LULCC trends. So far, the biophysical and socioeconomic drivers of forest change have not been quantified at the regional scale, particularly for SSEA. In this study, we quantify the biophysical and socioeconomic drivers of forest change on a country-by-country basis in SSEA using an integrated quantitative methodology, which systematically accounts for previously published driver information and regional datasets. We synthesize more than 200 publications to identify the drivers of the forest change at different spatial scales in SSEA. Subsequently, we collect spatially explicit proxy data to represent the identified drivers. We quantify the dynamics of forest and agricultural land from 1992 to 2015 using the Climate Change Initiative (CCI) land cover data developed by the European Space Agency (ESA). A geographically weighted regression method is employed to quantify the spatially heterogeneous drivers of forest change. Our results show that socioeconomic drivers are more important than biophysical drivers for the conversion of forest to agricultural land in South Asia and maritime Southeast Asia. In contrast, biophysical drivers are more important than socioeconomic drivers for the conversion of agricultural land to forest in maritime Southeast Asia and less important in South Asia. Both biophysical and socioeconomic drivers contribute approximately equally to both changes in the mainland Southeast Asia region. By quantifying the dynamics of forest and agricultural land and the spatially explicit drivers of their changes in SSEA, this study provides a solid foundation for LULCC modeling and projection.


Agriculture , Forests , Agriculture/trends , Asia , Asia, Southeastern , Climate Change , Socioeconomic Factors
17.
Nat Commun ; 10(1): 454, 2019 02 14.
Article En | MEDLINE | ID: mdl-30765702

Increasing atmospheric CO2 stimulates photosynthesis which can increase net primary production (NPP), but at longer timescales may not necessarily increase plant biomass. Here we analyse the four decade-long CO2-enrichment experiments in woody ecosystems that measured total NPP and biomass. CO2 enrichment increased biomass increment by 1.05 ± 0.26 kg C m-2 over a full decade, a 29.1 ± 11.7% stimulation of biomass gain in these early-secondary-succession temperate ecosystems. This response is predictable by combining the CO2 response of NPP (0.16 ± 0.03 kg C m-2 y-1) and the CO2-independent, linear slope between biomass increment and cumulative NPP (0.55 ± 0.17). An ensemble of terrestrial ecosystem models fail to predict both terms correctly. Allocation to wood was a driver of across-site, and across-model, response variability and together with CO2-independence of biomass retention highlights the value of understanding drivers of wood allocation under ambient conditions to correctly interpret and predict CO2 responses.


Carbon Dioxide/analysis , Trees/metabolism , Biomass , Carbon Dioxide/metabolism , Climate , Ecosystem , Photosynthesis , Trees/growth & development , Wood/growth & development
18.
Nature ; 562(7725): 110-114, 2018 10.
Article En | MEDLINE | ID: mdl-30283105

Climate change is shifting the phenological cycles of plants1, thereby altering the functioning of ecosystems, which in turn induces feedbacks to the climate system2. In northern (north of 30° N) ecosystems, warmer springs lead generally to an earlier onset of the growing season3,4 and increased ecosystem productivity early in the season5. In situ6 and regional7-9 studies also provide evidence for lagged effects of spring warmth on plant productivity during the subsequent summer and autumn. However, our current understanding of these lagged effects, including their direction (beneficial or adverse) and geographic distribution, is still very limited. Here we analyse satellite, field-based and modelled data for the period 1982-2011 and show that there are widespread and contrasting lagged productivity responses to spring warmth across northern ecosystems. On the basis of the observational data, we find that roughly 15 per cent of the total study area of about 41 million square kilometres exhibits adverse lagged effects and that roughly 5 per cent of the total study area exhibits beneficial lagged effects. By contrast, current-generation terrestrial carbon-cycle models predict much lower areal fractions of adverse lagged effects (ranging from 1 to 14 per cent) and much higher areal fractions of beneficial lagged effects (ranging from 9 to 54 per cent). We find that elevation and seasonal precipitation patterns largely dictate the geographic pattern and direction of the lagged effects. Inadequate consideration in current models of the effects of the seasonal build-up of water stress on seasonal vegetation growth may therefore be able to explain the differences that we found between our observation-constrained estimates and the model-constrained estimates of lagged effects associated with spring warming. Overall, our results suggest that for many northern ecosystems the benefits of warmer springs on growing-season ecosystem productivity are effectively compensated for by the accumulation of seasonal water deficits, despite the fact that northern ecosystems are thought to be largely temperature- and radiation-limited10.


Plant Development , Plant Physiological Phenomena , Seasons , Temperature , Computer Simulation , Geographic Mapping , Plant Transpiration , Plants
19.
Article En | MEDLINE | ID: mdl-30297465

Evaluating the response of the land carbon sink to the anomalies in temperature and drought imposed by El Niño events provides insights into the present-day carbon cycle and its climate-driven variability. It is also a necessary step to build confidence in terrestrial ecosystems models' response to the warming and drying stresses expected in the future over many continents, and particularly in the tropics. Here we present an in-depth analysis of the response of the terrestrial carbon cycle to the 2015/2016 El Niño that imposed extreme warming and dry conditions in the tropics and other sensitive regions. First, we provide a synthesis of the spatio-temporal evolution of anomalies in net land-atmosphere CO2 fluxes estimated by two in situ measurements based on atmospheric inversions and 16 land-surface models (LSMs) from TRENDYv6. Simulated changes in ecosystem productivity, decomposition rates and fire emissions are also investigated. Inversions and LSMs generally agree on the decrease and subsequent recovery of the land sink in response to the onset, peak and demise of El Niño conditions and point to the decreased strength of the land carbon sink: by 0.4-0.7 PgC yr-1 (inversions) and by 1.0 PgC yr-1 (LSMs) during 2015/2016. LSM simulations indicate that a decrease in productivity, rather than increase in respiration, dominated the net biome productivity anomalies in response to ENSO throughout the tropics, mainly associated with prolonged drought conditions.This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.


Atmosphere/analysis , Carbon Cycle , Ecosystem , El Nino-Southern Oscillation , Carbon Sequestration , Models, Theoretical
20.
Nat Commun ; 9(1): 2938, 2018 08 07.
Article En | MEDLINE | ID: mdl-30087330

Scenarios that limit global warming to below 2 °C by 2100 assume significant land-use change to support large-scale carbon dioxide (CO2) removal from the atmosphere by afforestation/reforestation, avoided deforestation, and Biomass Energy with Carbon Capture and Storage (BECCS). The more ambitious mitigation scenarios require even greater land area for mitigation and/or earlier adoption of CO2 removal strategies. Here we show that additional land-use change to meet a 1.5 °C climate change target could result in net losses of carbon from the land. The effectiveness of BECCS strongly depends on several assumptions related to the choice of biomass, the fate of initial above ground biomass, and the fossil-fuel emissions offset in the energy system. Depending on these factors, carbon removed from the atmosphere through BECCS could easily be offset by losses due to land-use change. If BECCS involves replacing high-carbon content ecosystems with crops, then forest-based mitigation could be more efficient for atmospheric CO2 removal than BECCS.

...