Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Drug Res Rev ; 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37724675

ABSTRACT

BACKGROUND: Multiple sclerosis (MS), a chronic inflammatory disorder, affects the central nervous system via myelin degradation. The cause of MS is not fully known, but during recent years, our knowledge has deepened significantly regarding the different aspects of MS, including etiology, molecular pathophysiology, diagnosis and therapeutic options. Myelin basic protein (MBP) is the main myelin protein that accounts for maintaining the stability of the myelin sheath. Recent evidence has revealed that MBP citrullination or deamination, which is catalyzed by Ca2+ dependent peptidyl arginine deiminase (PAD) enzyme leads to the reduction of positive charge, and subsequently proteolytic cleavage of MBP. The overexpression of PAD2 in the brains of MS patients plays an essential role in new epitope formation and progression of the autoimmune disorder. Some drugs have recently entered phase III clinical trials with promising efficacy and will probably obtain approval in the near future. As different therapeutic platforms develop, finding an optimal treatment for each individual patient will be more challenging. AIM: This review provides a comprehensive insight into MS with a focus on its pathogenesis and recent advances in diagnostic methods and its present and upcoming treatment modalities. CONCLUSION: MS therapy alters quickly as research findings and therapeutic options surrounding MS expand. McDonald's guidelines have created different criteria for MS diagnosis. In recent years, ever-growing interest in the development of PAD inhibitors has led to the generation of many reversible and irreversible PAD inhibitors against the disease with satisfactory therapeutic outcomes.

2.
Curr Drug Saf ; 18(1): 79-92, 2023.
Article in English | MEDLINE | ID: mdl-35507799

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system(CNS). It is widely accepted that the development and progression of MS result from aberrant activation of potentially encephalitogenic reactive-T cells against CNS antigens. The pathologic roles of both CD4+ (T helper; Th) and CD8+ T cells have been demonstrated in MS lesions. OBJECTIVE: In the present work, we applied a series of bioinformatics tools to design a dendritic cell (DC)-targeting Tregitope-based multi-epitope vaccine for MS to induce tolerance in pathogenic myelin-specific T cells. METHODS: The 3D structure of anti-DEC205 scFv and the remaining part of the vaccine were modeled by ROSIE Antibody server and ITASSER software, respectively. AIDA web server (ab initio domain assembly server) was applied to assemble two parts of the vaccine and build the full construct. Following modeled structure refinement and validation, physicochemical properties, and allergenicity of the vaccine were assessed. In the final step, in silico cloning was done to ensure high-level expression in the desired host. RESULTS: This vaccine consists of three main parts; 1) Anti-DEC205 scFv antibody, 2) multiepitope vaccine part composed of multiple pathogenic CD4+, and CD8+ T cell epitopes originated from multiple known antigens in MS patients, as well as T-regulatory (Treg)-inducing epitopes (Tregitopes), and 3) vasoactive intestinal peptide (VIP). All parts of the final vaccine were joined together with the help of proper linkers. After vaccine construction, the three-D structure, as well as different physicochemical and immunological features of the vaccine were predicted. Finally, in silico gene cloning was also carried out to assure efficient production of protein vaccine in Escherichia coli K12 expression strain. CONCLUSION: Computational study revealed that this vaccination can regulate MS disease progression and even relapse by harnessing pathogenic T cells.


Subject(s)
Multiple Sclerosis , Vaccines , Humans , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Multiple Sclerosis/therapy , Vaccines/therapeutic use
3.
Drug Metab Bioanal Lett ; 15(3): 192-201, 2022.
Article in English | MEDLINE | ID: mdl-36056864

ABSTRACT

OBJECTIVE: Berberine, a plant derived alkaloid, present in Berberis species is well known as one of the most important antioxidants. The current research aimed to study the heamatoprotective characteristics of berberine and clarify its plausible mechanisms against sodium nitrite. METHODS: Forty numbers of male Sprague Dawley rats were categorized into five equal groups, including group 1: control (normal saline); group 2: berberine (100 mg/kg); group 3: sodium nitrite (80 mg/kg); group 4: sodium nitrite (80 mg/kg) plus berberine (50 mg/kg) and group 5: sodium nitrite (80 mg/kg) plus berberine (100 mg/kg) groups. All animals were orally administrated for two months once daily. At the end of the 60th day, blood samples were withdrawn by cardiac puncture and collected in test vials when the animals had been anesthetized with ketamine (70 mg/kg). Then, hemolysate was prepared and the oxidative stress biomarkers, lipid peroxidation, and antioxidant capacity of erythrocytes were evaluated. RESULTS: Feeding of rats with sodium nitrite remarkably enhanced malondialdehyde (MDA) (p=0.001) levels and considerably reduced the levels of glutathione (GSH) (p=0.001), and also reduced the enzymatic activities of glutathione peroxidase (GPx) (p=0.02), superoxide dismutase (SOD) (p=0.001), glutathione reductase (GR) (p=0.02), and catalase (CAT) (p=0.01). However, the co-administration of these animals with 100 mg/kg of berberine remarkably reverted the values to reach nearly a normal level. While 50 mg/kg berberine failed to restore significantly all of these antioxidant biomarkers at a normal level. CONCLUSION: Our results clearly demonstrated that berberine in a dose-dependent manner led to protection against sodium nitrite-induced oxidative injury in rat erythrocytes, which possibly reflects the antioxidant ability of this alkaloid.


Subject(s)
Berberine , Rats , Animals , Berberine/pharmacology , Sodium Nitrite , Rats, Sprague-Dawley , Oxidative Stress , Lipid Peroxidation , Antioxidants/pharmacology , Malondialdehyde , Glutathione/metabolism
4.
Microrna ; 11(2): 139-162, 2022.
Article in English | MEDLINE | ID: mdl-35579134

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) have a pivotal role in Hepatitis B Virus (HBV) infection and its complications by targeting the cellular transcription factors required for gene expression or directly binding to HBV transcripts. Single Nucleotide Polymorphisms (SNPs) in miRNA genes affect their expression and the regulation of target genes, clinical course, diagnosis, and therapeutic interventions of HBV infection. METHODS: Computational assessment and cataloging of miRNA gene polymorphisms targeting mRNA transcripts straightly or indirectly through the regulation of hepatitis B infection by annotating the functional impact of SNPs on mRNA-miRNA and miRNA-RBS (miRNA binding sites) interaction were screened by applying various universally available datasets such as the miRNA SNP3.0 software. RESULTS: 2987 SNPs were detected in 139 miRNAs affecting hepatitis B infection. Among them, 313 SNPs were predicted to have a significant role in the progression of hepatitis B infection. The computational analysis also revealed that 45 out of the 313 SNPs were located in the seed region and were more important than others. Has-miR-139-3p had the largest number of SNPs in the seed region (n=6). On the other hand, proteoglycans in cancer, adherens junction, lysine degradation, NFkappa B signaling cascade, ECM-receptor binding, viral carcinogenesis, fatty acid metabolism, TGF-beta signaling pathway, p53 signaling pathway, immune evasion related pathways, and fatty acid biosynthesis were the most important pathways affected by these 139 miRNAs. CONCLUSION: The results revealed 45 SNPs in the seed region of 25 miRNAs as the catalog in miRNA genes that regulated the hepatitis B infection. The results also showed the most important pathways regulated by these miRNAs that can be targeted for therapeutic purposes.


Subject(s)
Hepatitis B , MicroRNAs , Humans , MicroRNAs/genetics , Nucleotides/metabolism , Hepatitis B/complications , Hepatitis B virus/genetics , RNA, Messenger/genetics , Fatty Acids/metabolism , Polymorphism, Single Nucleotide
5.
Bone Rep ; 15: 101131, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34621919

ABSTRACT

BACKGROUND: Ewing's sarcoma (ES) of the hip and trochanteric region is a rare malignancy. The tumor has a poor prognosis due to the problems in early diagnosis and medical intervention. CASE PRESENTATION: This paper reports a rare case of hip ES presented in a 34y/o female. The clinical, radiological, and histopathological features were all in favor of ES. Following treatment by neoadjuvant/adjuvant chemotherapy, and irradiation the patient is now with complete resolution of the tumor. CONCLUSION: The patient remained free of disease through 4 years of follow-up until now after diagnosis.

6.
Life Sci ; 265: 118866, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33301810

ABSTRACT

AIMS: GnRH-DFF40 (gonadotropin releasing hormone-DNA fragmentation factor 40) humanized recombinant immunotoxin serves as a prospective candidate for targeted therapy of malignancies with over-expressed gonadotropin releasing hormone receptor (GnRHR). In this study, we attempted to generate a GnRH-based chimeric protein composed of human DFF40 fused with GnRH which encodes an apoptotic nuclease and specifically targets cancer cells displaying GnRH receptor overexpression. MATERIALS AND METHODS: A codon optimized, synthetic GnRH-DFF40 fusion gene and its single counterpart (DFF40) were constructed in pET28a expression vector. Cytotoxicity of these expressed proteins were evaluated on three breast cancer cell lines (MCF7, MDA-MB231, and SKBR3). The stability and biological activity of the recombinant proteins were investigated in the treated cell line and cell-free system. Also, the ability of this fusion and its single form in inducing apoptosis, and inhibiting metastasis and migration were evaluated by flow cytometry, migration assay and wound healing analysis, respectively. In silico analyses were also done to understand the specific interactions between GnRH and its receptor. KEY FINDINGS: GnRH-DFF40 fusion protein and DFF40 were successfully expressed. The purified chimeric protein showed dose-dependent cytotoxicity against all three cell lines. The recombinant fusion protein was biologically active with nucleolytic functionality and apoptosis induction ability. Moreover, the fusion could inhibit the invasion property of MDA-MB-231 cells. In silico analysis also showed that four residues from GnRH domain and 11 GnRHR residues had the most interaction sites for specific targeted delivery of the immunotoxin in cancer cells. SIGNIFICANCE: Fusion construct could be a prospective candidate for targeted therapy of cancers upregulating GnRH receptor.


Subject(s)
Breast Neoplasms/therapy , Deoxyribonucleases/genetics , Immunotoxins/pharmacology , Poly-ADP-Ribose Binding Proteins/genetics , Receptors, LHRH/genetics , Recombinant Fusion Proteins/pharmacology , Apoptosis/physiology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell-Free System , Computer Simulation , Dose-Response Relationship, Drug , Female , Flow Cytometry , Humans , Immunotoxins/administration & dosage , MCF-7 Cells , Molecular Targeted Therapy , Recombinant Fusion Proteins/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...