Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Mol Psychiatry ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143322

ABSTRACT

Protein aggregation in brainstem nuclei is thought to occur in the early stages of Alzheimer's disease (AD), but its specific role in driving prodromal symptoms and disease progression is largely unknown. The dorsal raphe nucleus (DRN) contains a large population of serotonin (5-hydroxytryptamine; 5-HT) neurons that regulate mood, reward-related behavior, and sleep, which are all disrupted in AD. We report here that tau pathology is present in the DRN of individuals 25-80 years old without a known history of dementia, and its prevalence was comparable to the locus coeruleus (LC). By comparison, fewer cases were positive for other pathological proteins including α-synuclein, ß-amyloid, and TDP-43. To evaluate how early tau pathology impacts behavior, we overexpressed human P301L-tau in the DRN of mice and observed depressive-like behaviors and hyperactivity without deficits in spatial memory. Tau pathology was predominantly found in neurons relative to glia and colocalized with a significant proportion of Tph2-expressing neurons in the DRN. 5-HT neurons were also hyperexcitable in P301L-tauDRN mice, and there was an increase in the amplitude of excitatory post-synaptic currents (EPSCs). Moreover, astrocytic density was elevated in the DRN and accompanied by an increase in IL-1α and Frk expression, which suggests increased inflammatory signaling. Additionally, tau pathology was detected in axonal processes in the thalamus, hypothalamus, amygdala, and caudate putamen. A significant proportion of this tau pathology colocalized with the serotonin reuptake transporter (SERT), suggesting that tau may spread in an anterograde manner to regions outside the DRN. Together these results indicate that tau pathology accumulates in the DRN in a subset of individuals over 50 years and may lead to behavioral dysregulation, 5-HT neuronal dysfunction, and activation of local astrocytes which may be prodromal indicators of AD.

2.
Pharmacol Res ; 203: 107171, 2024 May.
Article in English | MEDLINE | ID: mdl-38599469

ABSTRACT

The impact of Alzheimer's disease (AD) and its related dementias is rapidly expanding, and its mitigation remains an urgent social and technical challenge. To date there are no effective treatments or interventions for AD, but recent studies suggest that alcohol consumption is correlated with the risk of developing dementia. In this review, we synthesize data from preclinical, clinical, and epidemiological models to evaluate the combined role of alcohol consumption and serotonergic dysfunction in AD, underscoring the need for further research on this topic. We first discuss the limitations inherent to current data-collection methods, and how neuropsychiatric symptoms common among AD, alcohol use disorder, and serotonergic dysfunction may mask their co-occurrence. We additionally describe how excess alcohol consumption may accelerate the development of AD via direct effects on serotonergic function, and we explore the roles of neuroinflammation and proteostasis in mediating the relationship between serotonin, alcohol consumption, and AD. Lastly, we argue for a shift in current research to disentangle the pathogenic effects of alcohol on early-affected brainstem structures in AD.


Subject(s)
Alcohol Drinking , Alzheimer Disease , Serotonin , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/etiology , Serotonin/metabolism , Alcohol Drinking/adverse effects , Animals , Brain/metabolism , Brain/drug effects , Alcoholism/metabolism
3.
Alcohol Clin Exp Res (Hoboken) ; 47(2): 219-239, 2023 02.
Article in English | MEDLINE | ID: mdl-36529893

ABSTRACT

BACKGROUND: People with alcohol use disorder (AUD) may be at higher risk for COVID-19. Angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) are required for cellular entry by SARS-CoV-2, but information on their expression in specific brain regions after alcohol exposure is limited. We sought to clarify how chronic alcohol exposure affects ACE2 expression in monoaminergic brainstem circuits and other putative SARS-CoV-2 entry points. METHODS: Brains were examined for ACE2 using immunofluorescence after 4 weeks of chronic intermittent ethanol (CIE) vapor inhalation. We also examined TMPRSS2, Cathepsin L, and ADAM17 by Western blot and RAS pathway mediators and pro-inflammatory markers via RT-qPCR. RESULTS: ACE2 was increased in most brain regions following CIE including the olfactory bulb (OB), hypothalamus (HT), raphe magnus (RMG), raphe obscurus (ROB), locus coeruleus (LC), and periaqueductal gray (PAG). We also observed increased colocalization of ACE2 with monoaminergic neurons in brainstem nuclei. Moreover, soluble ACE2 (sACE2) was elevated in OB, HT, and LC. The increase in sACE2 in OB and HT was accompanied by upregulation of ADAM17, an ACE2 sheddase, while TMPRSS2 increased in HT and LC. Cathepsin L, an endosomal receptor involved in viral entry, was also increased in OB. Alcohol can increase Angiotensin II, which triggers a pro-inflammatory response that may upregulate ACE2 via activation of RAS pathway receptors AT1R/AT2R. ACE2 then metabolizes Angiotensin II to Angiotensin (1-7) and provokes an anti-inflammatory response via MAS1. Accordingly, we report that AT1R/AT2R mRNA decreased in OB and increased in the LC, while MAS1 mRNA increased in both OB and LC. Other mRNAs for pro-inflammatory markers were also dysregulated in OB, HT, raphe, and LC. CONCLUSIONS: Our results suggest that alcohol triggers a compensatory upregulation of ACE2 in the brain due to disturbed RAS and may increase the risk or severity of SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Angiotensin II/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Brain/metabolism , Cathepsin L/metabolism , Ethanol/adverse effects , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , RNA, Messenger , SARS-CoV-2/genetics , SARS-CoV-2/metabolism
4.
bioRxiv ; 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35378747

ABSTRACT

Emerging evidence suggests that people with alcohol use disorders are at higher risk for SARS-CoV-2. SARS-CoV-2 engages angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) receptors for cellular entry. While ACE2 and TMPRSS2 genes are upregulated in the cortex of alcohol-dependent individuals, information on expression in specific brain regions and neural populations implicated in SARS-CoV-2 neuroinvasion, particularly monoaminergic neurons, is limited. We sought to clarify how chronic alcohol exposure affects ACE2 and TMPRSS2 expression in monoaminergic brainstem circuits and other putative SARS-CoV-2 entry points. C57BL/6J mice were exposed to chronic intermittent ethanol (CIE) vapor for 4 weeks and brains were examined using immunofluorescence. We observed increased ACE2 levels in the olfactory bulb and hypothalamus following CIE, which are known to mediate SARS-CoV-2 neuroinvasion. Total ACE2 immunoreactivity was also elevated in the raphe magnus (RMG), raphe obscurus (ROB), and locus coeruleus (LC), while in the dorsal raphe nucleus (DRN), ROB, and LC we observed increased colocalization of ACE2 with monoaminergic neurons. ACE2 also increased in the periaqueductal gray (PAG) and decreased in the amygdala. Whereas ACE2 was detected in most brain regions, TMPRSS2 was only detected in the olfactory bulb and DRN but was not significantly altered after CIE. Our results suggest that previous alcohol exposure may increase the risk of SARS-CoV-2 neuroinvasion and render brain circuits involved in cardiovascular and respiratory function as well as emotional processing more vulnerable to infection, making adverse outcomes more likely. Additional studies are needed to define a direct link between alcohol use and COVID-19 infection.

5.
Synapse ; 74(1): e22133, 2020 01.
Article in English | MEDLINE | ID: mdl-31556149

ABSTRACT

The ability to adapt to changing internal and external conditions is a key feature of biological systems. Homeostasis refers to a regulatory process that stabilizes dynamic systems to counteract perturbations. In the nervous system, homeostatic mechanisms control neuronal excitability, neurotransmitter release, neurotransmitter receptors, and neural circuit function. The neuromuscular junction (NMJ) of Drosophila melanogaster has provided a wealth of molecular information about how synapses implement homeostatic forms of synaptic plasticity, with a focus on the transsynaptic, homeostatic modulation of neurotransmitter release. This review examines some of the recent findings from the Drosophila NMJ and highlights questions the field will ponder in coming years.


Subject(s)
Homeostasis/physiology , Neuromuscular Junction/physiology , Neuronal Plasticity/physiology , Synaptic Transmission/physiology , Animals , Drosophila
6.
Elife ; 82019 06 10.
Article in English | MEDLINE | ID: mdl-31180325

ABSTRACT

Synapses and circuits rely on neuroplasticity to adjust output and meet physiological needs. Forms of homeostatic synaptic plasticity impart stability at synapses by countering destabilizing perturbations. The Drosophila melanogaster larval neuromuscular junction (NMJ) is a model synapse with robust expression of homeostatic plasticity. At the NMJ, a homeostatic system detects impaired postsynaptic sensitivity to neurotransmitter and activates a retrograde signal that restores synaptic function by adjusting neurotransmitter release. This process has been separated into temporally distinct phases, induction and maintenance. One prevailing hypothesis is that a shared mechanism governs both phases. Here, we show the two phases are separable. Combining genetics, pharmacology, and electrophysiology, we find that a signaling system consisting of PLCß, inositol triphosphate (IP3), IP3 receptors, and Ryanodine receptors is required only for the maintenance of homeostatic plasticity. We also find that the NMJ is capable of inducing homeostatic signaling even when its sustained maintenance process is absent. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).


Subject(s)
Drosophila melanogaster/metabolism , Neuromuscular Junction/metabolism , Neuronal Plasticity/physiology , Synapses/physiology , Synaptic Transmission/physiology , Animals , Animals, Genetically Modified , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Excitatory Postsynaptic Potentials/genetics , Excitatory Postsynaptic Potentials/physiology , Homeostasis/genetics , Homeostasis/physiology , Inositol 1,4,5-Trisphosphate Receptors/genetics , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Larva/genetics , Larva/metabolism , Neuronal Plasticity/genetics , Phospholipase C beta/genetics , Phospholipase C beta/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Signal Transduction/genetics , Signal Transduction/physiology , Synapses/metabolism , Synaptic Transmission/genetics
7.
PLoS Genet ; 14(8): e1007577, 2018 08.
Article in English | MEDLINE | ID: mdl-30080864

ABSTRACT

Gain-of-function mutations in the human CaV2.1 gene CACNA1A cause familial hemiplegic migraine type 1 (FHM1). To characterize cellular problems potentially triggered by CaV2.1 gains of function, we engineered mutations encoding FHM1 amino-acid substitutions S218L (SL) and R192Q (RQ) into transgenes of Drosophila melanogaster CaV2/cacophony. We expressed the transgenes pan-neuronally. Phenotypes were mild for RQ-expressing animals. By contrast, single mutant SL- and complex allele RQ,SL-expressing animals showed overt phenotypes, including sharply decreased viability. By electrophysiology, SL- and RQ,SL-expressing neuromuscular junctions (NMJs) exhibited enhanced evoked discharges, supernumerary discharges, and an increase in the amplitudes and frequencies of spontaneous events. Some spontaneous events were gigantic (10-40 mV), multi-quantal events. Gigantic spontaneous events were eliminated by application of TTX-or by lowered or chelated Ca2+-suggesting that gigantic events were elicited by spontaneous nerve firing. A follow-up genetic approach revealed that some neuronal hyperexcitability phenotypes were reversed after knockdown or mutation of Drosophila homologs of phospholipase Cß (PLCß), IP3 receptor, or ryanodine receptor (RyR)-all factors known to mediate Ca2+ release from intracellular stores. Pharmacological inhibitors of intracellular Ca2+ store release produced similar effects. Interestingly, however, the decreased viability phenotype was not reversed by genetic impairment of intracellular Ca2+ release factors. On a cellular level, our data suggest inhibition of signaling that triggers intracellular Ca2+ release could counteract hyperexcitability induced by gains of CaV2.1 function.


Subject(s)
Calcium Channels, N-Type/genetics , Calcium/metabolism , Cerebellar Ataxia/genetics , Drosophila melanogaster/genetics , Migraine Disorders/genetics , Synapses/physiology , Amino Acid Sequence , Animals , Calcium Channels, N-Type/metabolism , Cerebellar Ataxia/metabolism , Drosophila melanogaster/metabolism , Humans , Migraine Disorders/metabolism , Mutation , Neuromuscular Junction/physiology , Neurons/physiology , Phenotype , Synaptic Transmission , Transgenes
8.
Horm Behav ; 64(1): 81-8, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23702093

ABSTRACT

The decarboxylated thyroid hormone derivative 3-iodothyronamine (T1AM) has been reported as having behavioral and physiological consequences distinct from those of thyroid hormones. Here, we investigate the effects of T1AM on EEG-defined sleep after acute administration to the preoptic region of adult male rats. Our laboratory recently demonstrated a decrease in EEG-defined sleep after administration of 3,3',5-triiodo-l-thyronine (T3) to the same brain region. After injection of T1AM or vehicle solution, EEG, EMG, activity, and core body temperature were recorded for 24h. Sleep parameters were determined from EEG and EMG data. Earlier investigations found contrasting systemic effects of T3 and T1AM, such as decreased heart rate and body temperature after intraperitoneal T1AM injection. However, nREM sleep was decreased in the present study after injections of 1 or 3 µg T1AM, but not after 0.3 or 10 µg, closely mimicking the previously reported effects of T3 administration to the preoptic region. The biphasic dose-response observed after either T1AM or T3 administration seems to indicate shared mechanisms and/or functions of sleep regulation in the preoptic region. Consistent with systemic administration of T1AM, however, microinjection of T1AM decreased body temperature. The current study is the first to show modulation of sleep by T1AM, and suggests that T1AM and T3 have both shared and independent effects in the adult mammalian brain.


Subject(s)
Body Temperature Regulation/drug effects , Motor Activity/drug effects , Preoptic Area/physiology , Sleep/drug effects , Thyronines/pharmacology , Analysis of Variance , Animals , Dose-Response Relationship, Drug , Electroencephalography/drug effects , Electromyography/drug effects , Male , Microinjections , Rats , Rats, Sprague-Dawley , Sleep, REM/drug effects , Thyronines/administration & dosage , Triiodothyronine/pharmacology , Wakefulness/physiology
9.
Brain Res ; 1516: 55-65, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23603414

ABSTRACT

Thyroid hormones induce short-latency nongenomic effects in adult brain tissue, suggesting that their acute administration would affect brain activity in intact animals. The influence on EEG-defined sleep of acute restoration of l-3,3'5-triiodothyronine (T3) to a sleep-regulatory brain region, the preoptic region, was examined in hypothyroid rats. Sleep parameters were monitored for 48 h weekly: for 24 h immediately following a control microinjection and for an additional 24h after a second microinjection including a T3 dose to the preoptic region or lateral ventricle. Male albino rats were implanted with EEG and EMG electrodes, abdominal temperature/activity transponders and unilateral lateral ventricle cannulae or bilateral preoptic region cannulae, and were given 0.02% n-propythiouracil (PTU) in their drinking water for 4 weeks. For histologically-confirmed bilateral preoptic region cannula placements (N=7), effects of T3 (especially a 3 µg dose) were apparent within 10h of injection as decreases in REM, NREM and total sleep and increases in waking and activity. Minimal effects of lateral ventricle T3 microinjection were demonstrated (N=5). Significant effects due to the time of day on the experimental measures were seen in both lateral ventricle and preoptic region groups, but these effects did not interact with the effect of administered hormone dose. These effects of T3 microinjection to the preoptic region were demonstrated after acute injections and within hours of injection rather than after chronic administration over days.


Subject(s)
Body Temperature/drug effects , Hypothyroidism/complications , Movement Disorders/drug therapy , Preoptic Area/drug effects , Sleep Wake Disorders/drug therapy , Triiodothyronine/therapeutic use , Analysis of Variance , Animals , Disease Models, Animal , Electroencephalography , Electromyography , Hypothyroidism/drug therapy , Hypothyroidism/etiology , Male , Microinjections , Movement Disorders/etiology , Preoptic Area/physiology , Rats , Rats, Sprague-Dawley , Sleep Wake Disorders/etiology , Time Factors
10.
Brain Res ; 1516: 45-54, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23348377

ABSTRACT

In adult brain tissue, thyroid hormones are known to have multiple effects which are not mediated by chronic influences of the hormones on heterodimeric thyroid hormone nuclear receptors. Previous work has shown that acute microinjections of l-triiodothyronine (T3) to the preoptic region significantly influence EEG-defined sleep in hypothyroid rats. The current study examined the effects of similar microinjections in euthyroid rats. In 7 rats with histologically confirmed microinjection sites bilaterally placed in the preoptic region, slow-wave sleep time was significantly decreased, but REM and waking were increased as compared to vehicle-injected controls. The EEG-defined parameters were significantly influenced by the microinjections in a biphasic dose-response relationship; the lowest (0.3µg) and highest (10µg) doses tested were without significant effect while intermediate doses (1 and 3µg) induced significant differences from controls. There were significant diurnal variations in the measures, yet no significant interactions between the effect of hormone and time of day were demonstrated. Core body temperature was not significantly altered in the current study. The demonstration of effects of T3 within hours instead of days is consistent with a rapid mechanism of action such as a direct influence on neurotransmission. Since the T3-mediated effects were robust in the current work, euthyroid rats retain thyroid hormone sensitivity which would be needed if sleep-regulatory mechanisms in the preoptic region are continuously modulated by the hormones. This article is part of a Special Issue entitled LInked: BRES-D-12-01552 & BRES-D-12-01363R2.


Subject(s)
Hypothyroidism/physiopathology , Motor Activity/drug effects , Preoptic Area/drug effects , Sleep Stages/drug effects , Triiodothyronine/pharmacology , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Electroencephalography , Electromyography , Hypothyroidism/drug therapy , Male , Motor Activity/physiology , Preoptic Area/physiology , Rats , Rats, Sprague-Dawley , Thyroid Gland/surgery , Time Factors , Triiodothyronine/therapeutic use , Wakefulness/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL