Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 264: 120304, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34464918

ABSTRACT

In the flavin family of photoactive biomolecules, lumichrome (LM) is a very important compound. It contains a tri-cyclic structure with methyl groups at two sides. It formed by the partial decomposition and biodegradation of riboflavin in both acidic as well as in neutral medium. Herein, we have studied the photophysical properties of LM in the presence of two zwitterionic surfactants, namely dodecyldimethyl(3-sulfopropyl) ammonium hydroxide inner salt (DSB), and tetradecyldimethyl(3-sulfopropyl) ammonium hydroxide inner salt (TSB), having the same head group but a different tail part. We have used steady-state absorption, fluorescence emission, and time-resolved fluorescence emission measurements. We observed that in the presence of zwitterionic surfactant aggregates LM shows excitation and emission wavelength dependent emission properties, which demonstrate the structural changes that take place from one form to another prototropic form of LM molecule. The higher rotational relaxation time of LM in the case of DSB compared to TSB demonstrated that LM is facing more rigid environment in DSB micelles compared to TSB micelles.


Subject(s)
Micelles , Surface-Active Agents , Flavins , Organic Chemicals , Spectrometry, Fluorescence
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 258: 119812, 2021 Sep 05.
Article in English | MEDLINE | ID: mdl-33905961

ABSTRACT

Photophysics and torsional dynamics of thiazole orange (TO) as a function of temperature have been studied in two deep eutectic solvents (DESs) using spectroscopic techniques. Two DESs are used as a solvent namely DES-I (choline chloride + urea, mole ratio 1: 2) and DES-II (N,N diethyl ethanol ammonium chloride + urea, mole ratio 1: 2). We explore the influence of DESs on the photophysical properties of TO. The fluorescence quantum yield and fluorescence lifetime of TO decreases with increasing temperature due to thermal deactivation. At higher temperature, fluorescence quantum yield of TO decreases in DESs may be due to the molecular rotor nature of TO, with the benzothiazole and quinoline ring of this dye being able to be rotated relative to each other in the excited state. In these solvents, the free volume idea was found to provide a truthful report of the solvent viscosity-temperature behavior, and the probe torsional dynamics. Fluorescence lifetime imaging microscopy (FLIM) was used to insight and observed the distribution of lifetime of TO in the surface of both DESs. The contact angle was determined to show the hygroscopic nature of the DESs.

3.
Langmuir ; 37(16): 5034-5048, 2021 04 27.
Article in English | MEDLINE | ID: mdl-33847123

ABSTRACT

Several applications of graphene oxide (GO) have been established over the years, and it has the potential to be used as a biomedical material. Studying the effect of GO on protein-ligand (small molecules/drugs) complex systems are vital as the mechanisms involved are not well understood. The interaction of GO on the protein-ligand binding is also vital for the preparation of an effective drug carrier in the bloodstream. In this work, we have tried to explore in details the effect of GO on the interaction between a hydrophilic molecule, namely, 7-(N,N'-diethylamino) coumarin-3-carboxylic acid (7-DCA) with human serum albumin (HSA) by employing multispectroscopic, microscopic, calorimetric, and molecular docking studies. We find out that protein-ligand complexes were placed on the GO surface, and GO gives stability to the protein-ligand complex via hydrogen bonding, electrostatic interactions, hydrophobic interactions, and so forth. Due to the presence of a large surface area in GO, it offers a hydrophobic environment, and as a result, the emission maxima of 7-DCA in the ternary complex is more blue-shifted, and the average lifetime becomes higher compared to the binary system. Circular dichroism spectral studies give information about the conformational changes of HSA in the absence and presence of GO when it forms complex with 7-DCA. The fluorescence lifetime imaging study shows the presence of the 7-DCA/HSA complex on the GO sheet. Molecular docking simulation shows that the closest distance between 7-DCA and HSA is 11.9 Å, and the protein interacted with the ligand through hydrogen bonding, hydrophobic interaction, and so forth.


Subject(s)
Ligands , Binding Sites , Circular Dichroism , Graphite , Humans , Hydrophobic and Hydrophilic Interactions , Molecular Docking Simulation , Protein Binding , Spectrometry, Fluorescence , Thermodynamics
4.
Chem Asian J ; 15(8): 1296-1300, 2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32100956

ABSTRACT

Solvent-dependent switching of graphene oxide (GO) as fluorescence quencher or enhancer was observed. In some solvents, GO increases the fluorescence yield of a hydrophilic molecule 7-(diethylamino)-coumarin-3-carboxylic acid (7-DCA), and in some solvents GO act as a quencher of fluorescence.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 224: 117346, 2020 Jan 05.
Article in English | MEDLINE | ID: mdl-31344577

ABSTRACT

The photophysics and structural transition dynamics of a bio-active flavin lumichrome (LM) entrapped in two sugars based neutral surfactants were reported. Sugar-based surfactants, which were used for research purpose are potential environmentally friendly, green alternative amphiphilic surface active substance compared to other kinds of common surfactants. Here, two alkyl glucoside surfactants n-octyl-ß-D-glucopyranoside (OBG) and n-octyl-ß-D-thioglucopyranoside (OBTG) were used. This work is carried out by using steady-state absorption and fluorescence emission spectroscopy along with time-resolved fluorescence emission techniques. Photophysics of LM was modulated several folds in these two sugar-based neutral micelles. LM exhibits excitation and emission wavelength dependent fluorescence properties in these two sugars based neutral micelles. LM confined in the micellar environments exhibited structural transition dynamism, i.e. different kinds of conformers are equilibrated. Herein, different conformers of LM are identified and explained with the help of spectroscopic methods. From the fluorescence anisotropy measurement, it was found that the rotational relaxation time of LM in OBG micelle was more compared to that in OBTG micelle, which indicates that the LM molecule faced much more constrained environment in OBG micellar media.


Subject(s)
Flavins/chemistry , Glucosides/chemistry , Surface-Active Agents/chemistry , Thioglucosides/chemistry , Flavins/analysis , Micelles , Models, Molecular , Spectrometry, Fluorescence
6.
Photochem Photobiol ; 95(5): 1151-1159, 2019 09.
Article in English | MEDLINE | ID: mdl-30932194

ABSTRACT

Herein, we reported the photophysical behavior of lumichrome (LC), one of the biologically active flavin molecules, in the presence of small unilamellar vesicle of anionic lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). With the help of different spectroscopic techniques, we have proposed that anionic DMPC liposome interacts with the cationic form LC in ground state and in excited state and modulate the spectral properties of LC. Photophysical study reveals that different prototropic forms of LC are present in DMPC liposome medium. In the presence of DMPC liposome, fluorescence emission properties of LC vary with change in excitation and emission wavelengths. This indicates switch over between different structural forms of LC. From fluorescence lifetime measurements and fluorescence lifetime imaging (FLIM) study, it was revealed that emission decay profile of LC was fitted biexponentially in the presence of liposome. It suggests that in the presence of liposome, more than one form of LC is present. We have constructed the time-resolved area-normalized emission spectra (TRANES) of LC in the liposome and found one isoemissive point. This confirmed that two emissive species of LC are present in liposome. FLIM study and FE-SEM study give an idea about the structural feature of the complex between LC and liposome.


Subject(s)
Flavins/chemistry , Liposomes , Dimyristoylphosphatidylcholine/chemistry , Microscopy, Electron, Scanning , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL