Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-22454693

ABSTRACT

Inflammation contributes to leukocyte migration, termed insulitis, and ß-cell loss in type 1 diabetes (T1D). Naturally occurring anthraquinones are claimed as anti-inflammatory compounds; however, their actions are not clear. This study aimed to investigate the effect and mechanism of catenarin on the inflammatory disease, T1D. Catenarin and/or its anthraquinone analogs dose-dependently suppressed C-X-C chemokine receptor type 4 (CXCR4)- and C-C chemokine receptor type 5 (CCR5)-implicated chemotaxis in leukocytes. Catenarin, the most potent anthraquinone tested in the study, prevented T1D in nonobese diabetic mice. Mechanistic study showed that catenarin did not act on the expression of CCR5 and CXCR4. On the contrary, catenarin inhibited CCR5- and CXCR4-mediated chemotaxis via the reduction of the phosphorylation of mitogen-activated protein kinases (p38 and JNK) and their upstream kinases (MKK6 and MKK7), and calcium mobilization. Overall, the data demonstrate the preventive effect and molecular mechanism of action of catenarin on T1D, suggesting its novel use as a prophylactic agent in T1D.

2.
PLoS One ; 6(11): e27480, 2011.
Article in English | MEDLINE | ID: mdl-22087325

ABSTRACT

Plants provide a rich source of lead compounds for a variety of diseases. A novel approach combining phytochemistry and chemotaxis assays was developed and used to identify and study the mechanisms of action of the active compounds in F. japonica, a medicinal herb traditionally used to treat inflammation. Based on a bioactivity-guided purification strategy, two anthranoids, emodin and physcion, were identified from F. japonica. Spectroscopic techniques were used to characterize its crude extract, fractions and phytochemicals. The crude extract, chloroform fraction, and anthranoids of F. japonica significantly inhibited CXCR4-mediated chemotaxis. Mechanistic studies showed that emodin and physcion inhibited chemotaxis via inactivating the MEK/ERK pathway. Moreover, the crude extract and emodin could prevent or treat type 1 diabetes in non-obese diabetic (NOD) mice. This study illustrates the applicability of a combinational approach for the study of anti-inflammatory medicine and shows the potential of F. japonica and its anthranoids for anti-inflammatory therapy.


Subject(s)
Anti-Inflammatory Agents/isolation & purification , Chemotaxis/drug effects , Fallopia japonica/chemistry , Animals , Anthraquinones/isolation & purification , Anthraquinones/pharmacology , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/prevention & control , Emodin/analogs & derivatives , Emodin/isolation & purification , Emodin/therapeutic use , MAP Kinase Signaling System , Mice , Mice, Inbred NOD , Plant Extracts/therapeutic use , Plants, Medicinal/chemistry , Receptors, CXCR4
SELECTION OF CITATIONS
SEARCH DETAIL