Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(5): e0299017, 2024.
Article in English | MEDLINE | ID: mdl-38758777

ABSTRACT

A growing threat to male infertility has become a major concern for the human population due to the advent of modern technologies as a source of radiofrequency radiation (RFR). Since these technologies have become an integral part of our daily lives, thus, it becomes necessary to know the impression of such radiations on human health. In view of this, the current study aims to focus on the biological effects of radiofrequency electromagnetic radiations on mouse Leydig cell line (TM3) in a time-dependent manner. TM3 cells were exposed to RFR emitted from 4G cell phone and also exposed to a particular frequency of 1800 MHz and 2450 MHz from RFR exposure system. The cells were then evaluated for different parameters such as cell viability, cell proliferation, testosterone production, and ROS generation. A considerable reduction in the testosterone levels and proliferation rate of TM3 cells were observed at 120 min of exposure as compared to the control group in all exposure settings. Conversely, the intracellular ROS levels showed a significant rise at 60, 90 and 120 min of exposure in both mobile phone and 2450 MHz exposure groups. However, RFR treatment for different time durations (15, 30, 45, 60, 90, and 120 min) did not have significant effect on cell viability at any of the exposure condition (2450 MHz, 1800 MHz, and mobile phone radiation). Therefore, our findings concluded with the negative impact of radiofrequency electromagnetic radiations on Leydig cell's physiological functions, which could be a serious concern for male infertility. However, additional studies are required to determine the specific mechanism of RFR action as well as its long-term consequences.


Subject(s)
Cell Proliferation , Cell Survival , Leydig Cells , Radio Waves , Reactive Oxygen Species , Testosterone , Male , Leydig Cells/radiation effects , Leydig Cells/metabolism , Animals , Mice , Reactive Oxygen Species/metabolism , Radio Waves/adverse effects , Cell Proliferation/radiation effects , Testosterone/metabolism , Cell Survival/radiation effects , Cell Line , Cell Phone , Electromagnetic Radiation
2.
Curr Protein Pept Sci ; 24(3): 240-246, 2023.
Article in English | MEDLINE | ID: mdl-36718968

ABSTRACT

Fertilization is a very sophisticated and unique process involving several key steps resulting in a zygote's formation. Recent research has indicated that some immune system-related cell surface molecules (CD molecules from the tetraspanin superfamily) may have a role in fertilization. Extracellular vesicles are undeniably involved in a variety of cellular functions, including reproduction. Tetraspanin proteins identified in extracellular vesicles are now used mostly as markers; mounting evidence indicates that they also participate in cell targeting, cargo selection, and extracellular vesicle formation. Their significance and potential in mammalian reproduction are currently being studied extensively. Despite the fact that the current data did not establish any theory, the crucial function of tetraspanins in the fertilization process was not ruled out, and the specific role of tetraspanins is still unknown. In this review, we bring insight into the existing knowledge regarding the expression of tetraspanins in spermatozoa and seminal fluid and their role in gamete binding and fusion.


Subject(s)
Fertilization , Tetraspanins , Animals , Male , Tetraspanin 29/genetics , Tetraspanin 29/metabolism , Tetraspanins/genetics , Tetraspanins/metabolism , Spermatozoa/metabolism , Genitalia, Male/metabolism , Mammals/metabolism
3.
Int J Environ Health Res ; 33(4): 358-373, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35132884

ABSTRACT

With increasing technological developments, exposure to non-ionizing radiations has become unavoidable as people cannot escape from electromagnetic field sources, such as Wi-Fi, electric wires, microwave oven, radio, telecommunication, bluetooth devices, etc. These radiations can be associated with increased health problems of the users. This review aims to determine the effects of non-ionizing electromagnetic radiations on female fertility. To date, several in vitro and in vivo studies unveiled that exposure to non-ionizing radiations brings about harmful effects on oocytes, ovarian follicles, endometrial tissue, estrous cycle, reproductive endocrine hormones, developing embryo, and fetal development in animal models. Non-ionizing radiation also upsurges the free radical load in the uterus and ovary, which leads to inhibition of cell growth and DNA disruptions. In conclusion, non-ionizing electromagnetic radiations can cause alterations in both germ cells as well as in their nourishing environment and also affect other female reproductive parameters that might lead to infertility.


Subject(s)
Electromagnetic Fields , Reproduction , Animals , Female , Electromagnetic Fields/adverse effects , Electromagnetic Radiation , Fertility
SELECTION OF CITATIONS
SEARCH DETAIL
...