Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Heliyon ; 9(9): e19622, 2023 Sep.
Article En | MEDLINE | ID: mdl-37810164

Water pollution caused by the release of organic pollutants is a major environmental concern worldwide. These pollutants can have harmful effects on aquatic ecosystems and the organisms living within them, as well as on human health when contaminated water is consumed. It is essential to implement proper treatment and management strategies to prevent and mitigate water pollution. Moreover, the major untreated industrial effluents are synthetic organic compounds especially 2,4,6-trichlorophenol (TCP) which cause several environmental issues and heath related problems in humans. To cope with this problem, an excellent 2D porous material based on p-DMAC4/GO composite has been synthesized as adsorbent material for the effective removal of 2,4,6-trichlorophenol pollutant from wastewater. In this regard, the advanced analytical tools such as Fourier-Transform infrared (FT-IR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray spectroscopy (EDS) were used for its characterization. The results justified the chemical composition, excellent crystalline nature, surface morphology and elemental composition of the synthesized composite material. The synthesized adsorbent material showed 95% adsorption of TCP from wastewater system at optimal conditions i.e., pH (6), adsorbent dosage (30 mg) and shaking time (60 min). The mathematical models such as isotherms, thermodynamics and kinetics studies validate the nature of adsorption process of TCP pollutant. The adsorption data found to be best fitted with Langmuir isotherms (R2 = 0.99); whereas kinetic study suggested the pseudo-second-order nature of reaction with R2 = 0.99. The thermodynamics study confirmed the spontaneous and endothermic nature of the TCP pollutant onto the surface of p-DMAC4/GO material. Moreover, the results of current work were also compared with existing reported adsorbents and data suggested the higher efficiency, feasibility, and reusability of p-DMAC4/GO material to remove the TCP pollutant from the wastewater system.

2.
RSC Adv ; 13(19): 12695-12702, 2023 Apr 24.
Article En | MEDLINE | ID: mdl-37114023

In this study, two-dimensional graphene oxide-based novel membranes were fabricated by modifying the surface of graphene oxide nanosheets with six-armed poly(ethylene glycol) (PEG) at room conditions. The as-modified PEGylated graphene oxide (PGO) membranes with unique layered structures and large interlayer spacing (∼1.12 nm) were utilized for organic solvent nanofiltration applications. The as-prepared 350 nm-thick PGO membrane offers a superior separation (>99%) against evans blue, methylene blue and rhodamine B dyes along with high methanol permeance ∼ 155 ± 10 L m-2 h-1, which is 10-100 times high compared to pristine GO membranes. Additionally, these membranes are stable for up to 20 days in organic solvent. Hence the results suggested that the as-synthesized PGO membranes with superior separation efficiency for dye molecules in organic solvent can be used in future for organic solvent nanofiltration application.

3.
ACS Omega ; 8(8): 7648-7656, 2023 Feb 28.
Article En | MEDLINE | ID: mdl-36872981

Sufficient efforts have been carried out to fabricate highly efficient graphene oxide (GO) lamellar membranes for heavy metal ion separation and desalination of water. However, selectivity for small ions remains a major problem. Herein, GO was modified by using onion extractive (OE) and a bioactive phenolic compound, i.e., quercetin. The as-prepared modified materials were fabricated into membranes and used for separation of heavy metal ions and water desalination. The GO/onion extract (GO/OE) composite membrane with a thickness of 350 nm shows an excellent rejection efficiency for several heavy metal ions such as Cr6+ (∼87.5%), As3+ (∼89.5%), Cd2+ (∼93.0%), and Pb2+ (∼99.5%) and a good water permeance of ∼460 ± 20 L m-2 h-1 bar-1. In addition, a GO/quercetin (GO/Q) composite membrane is also fabricated from quercetin for comparative studies. Quercetin is an active ingredient of onion extractives (2.1% w/w). The GO/Q composite membranes show good rejection up to ∼78.0, ∼80.5, ∼88.0, and 95.2% for Cr6+, As3+, Cd2+, and Pb2+, respectively, with a DI water permeance of ∼150 ± 10 L m-2 h-1 bar-1. Further, both membranes are used for water desalination by measuring rejection of small ions such as NaCl, Na2SO4, MgCl2, and MgSO4. The resulting membranes show >70% rejection for small ions. In addition, both membranes are used for filtration of Indus River water and the GO/Q membrane shows remarkably high separation efficiency and makes river water suitable for drinking purpose. Furthermore, the GO/QE composite membrane is highly stable up to ∼25 days under acidic, basic, and neutral environments as compared to GO/Q composite and pristine GO-based membranes.

...