Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
2.
Am J Ophthalmol ; 233: 111-123, 2022 01.
Article in English | MEDLINE | ID: mdl-34166655

ABSTRACT

To identify functionally related genes associated with diabetic retinopathy (DR) risk using gene set enrichment analyses applied to genome-wide association study meta-analyses. METHODS: We analyzed DR GWAS meta-analyses performed on 3246 Europeans and 2611 African Americans with type 2 diabetes. Gene sets relevant to 5 key DR pathophysiology processes were investigated: tissue injury, vascular events, metabolic events and glial dysregulation, neuronal dysfunction, and inflammation. Keywords relevant to these processes were queried in 4 pathway and ontology databases. Two GSEA methods, Meta-Analysis Gene set Enrichment of variaNT Associations (MAGENTA) and Multi-marker Analysis of GenoMic Annotation (MAGMA), were used. Gene sets were defined to be enriched for gene associations with DR if the P value corrected for multiple testing (Pcorr) was <.05. RESULTS: Five gene sets were significantly enriched for numerous modest genetic associations with DR in one method (MAGENTA or MAGMA) and also at least nominally significant (uncorrected P < .05) in the other method. These pathways were regulation of the lipid catabolic process (2-fold enrichment, Pcorr = .014); nitric oxide biosynthesis (1.92-fold enrichment, Pcorr = .022); lipid digestion, mobilization, and transport (1.6-fold enrichment, P = .032); apoptosis (1.53-fold enrichment, P = .041); and retinal ganglion cell degeneration (2-fold enrichment, Pcorr = .049). The interferon gamma (IFNG) gene, previously implicated in DR by protein-protein interactions in our GWAS, was among the top ranked genes in the nitric oxide pathway (best variant P = .0001). CONCLUSIONS: These GSEA indicate that variants in genes involved in oxidative stress, lipid transport and catabolism, and cell degeneration are enriched for genes associated with DR risk. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Retinopathy , Diabetes Mellitus, Type 2/genetics , Diabetic Retinopathy/genetics , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide , Risk Factors
3.
HGG Adv ; 2(2)2021 Apr 08.
Article in English | MEDLINE | ID: mdl-34604815

ABSTRACT

Genomic discovery and characterization of risk loci for type 2 diabetes (T2D) have been conducted primarily in individuals of European ancestry. We conducted a multiethnic genome-wide association study of T2D among 53,102 cases and 193,679 control subjects from African, Hispanic, Asian, Native Hawaiian, and European population groups in the Population Architecture Genomics and Epidemiology (PAGE) and Diabetes Genetics Replication and Meta-analysis (DIAGRAM) Consortia. In individuals of African ancestry, we discovered a risk variant in the TGFB1 gene (rs11466334, risk allele frequency (RAF) = 6.8%, odds ratio [OR] = 1.27, p = 2.06 × 10-8), which replicated in independent studies of African ancestry (p = 6.26 × 10-23). We identified a multiethnic risk variant in the BACE2 gene (rs13052926, RAF = 14.1%, OR = 1.08, p = 5.75 × 10-9), which also replicated in independent studies (p = 3.45 × 10-4). We also observed a significant difference in the performance of a multiethnic genetic risk score (GRS) across population groups (pheterogeneity = 3.85 × 10-20). Comparing individuals in the top GRS risk category (40%-60%), the OR was highest in Asians (OR = 3.08) and European (OR = 2.94) ancestry populations, followed by Hispanic (OR = 2.39), Native Hawaiian (OR = 2.02), and African ancestry (OR = 1.57) populations. These findings underscore the importance of genetic discovery and risk characterization in diverse populations and the urgent need to further increase representation of non-European ancestry individuals in genetics research to improve genetic-based risk prediction across populations.

5.
JAMA Ophthalmol ; 138(2): 174-181, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31855235

ABSTRACT

Importance: Keratoconus is a condition in which the cornea progressively thins and protrudes in a conical shape, severely affecting refraction and vision. It is a major indication for corneal transplant. To discover new genetic loci associated with keratoconus and better understand the causative mechanism of this disease, we performed a genome-wide association study on patients with keratoconus. Objective: To identify genetic susceptibility regions for keratoconus in the human genome. Design, Setting, and Participants: This study was conducted with data from eye clinics in Australia, the United States, and Northern Ireland. The discovery cohort of individuals with keratoconus and control participants from Australia was genotyped using the Illumina HumanCoreExome single-nucleotide polymorphism array. After quality control and data cleaning, genotypes were imputed against the 1000 Genomes Project reference panel (phase III; version 5), and association analyses were completed using PLINK version 1.90. Single-nucleotide polymorphisms with P < 1.00 × 10-6 were assessed for replication in 3 additional cohorts. Control participants were drawn from the cohorts of the Blue Mountains Eye Study and a previous study of glaucoma. Replication cohorts were from a previous keratoconus genome-wide association study data set from the United States, a cohort of affected and control participants from Australia and Northern Ireland, and a case-control cohort from Victoria, Australia. Data were collected from January 2006 to March 2019. Main Outcomes and Measures: Associations between keratoconus and 6 252 612 genetic variants were estimated using logistic regression after adjusting for ancestry using the first 3 principal components. Results: The discovery cohort included 522 affected individuals and 655 control participants, while the replication cohorts included 818 affected individuals (222 from the United States, 331 from Australia and Northern Ireland, and 265 from Victoria, Australia) and 3858 control participants (2927 from the United States, 229 from Australia and Northern Ireland, and 702 from Victoria, Australia). Two novel loci reached genome-wide significance (defined as P < 5.00 × 10-8), with a P value of 7.46 × 10-9 at rs61876744 in patatin-like phospholipase domain-containing 2 gene (PNPLA2) on chromosome 11 and a P value of 6.35 × 10-12 at rs138380, 2.2 kb upstream of casein kinase I isoform epsilon gene (CSNK1E) on chromosome 22. One additional locus was identified with a P value less than 1.00 × 10-6 in mastermind-like transcriptional coactivator 2 (MAML2) on chromosome 11 (P = 3.91 × 10-7). The novel locus in PNPLA2 reached genome-wide significance in an analysis of all 4 cohorts (P = 2.45 × 10-8). Conclusions and Relevance: In this relatively large keratoconus genome-wide association study, we identified a genome-wide significant locus for keratoconus in the region of PNPLA2 on chromosome 11.


Subject(s)
Keratoconus/genetics , Polymorphism, Single Nucleotide , Adult , Female , Fuchs' Endothelial Dystrophy/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Lipase/genetics , Logistic Models , Male , Middle Aged
6.
Diabetes ; 68(2): 441-456, 2019 02.
Article in English | MEDLINE | ID: mdl-30487263

ABSTRACT

To identify genetic variants associated with diabetic retinopathy (DR), we performed a large multiethnic genome-wide association study. Discovery included eight European cohorts (n = 3,246) and seven African American cohorts (n = 2,611). We meta-analyzed across cohorts using inverse-variance weighting, with and without liability threshold modeling of glycemic control and duration of diabetes. Variants with a P value <1 × 10-5 were investigated in replication cohorts that included 18,545 European, 16,453 Asian, and 2,710 Hispanic subjects. After correction for multiple testing, the C allele of rs142293996 in an intron of nuclear VCP-like (NVL) was associated with DR in European discovery cohorts (P = 2.1 × 10-9), but did not reach genome-wide significance after meta-analysis with replication cohorts. We applied the Disease Association Protein-Protein Link Evaluator (DAPPLE) to our discovery results to test for evidence of risk being spread across underlying molecular pathways. One protein-protein interaction network built from genes in regions associated with proliferative DR was found to have significant connectivity (P = 0.0009) and corroborated with gene set enrichment analyses. These findings suggest that genetic variation in NVL, as well as variation within a protein-protein interaction network that includes genes implicated in inflammation, may influence risk for DR.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Genome-Wide Association Study/methods , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetic Retinopathy , Genetic Predisposition to Disease , Genotype , Glycated Hemoglobin/metabolism , Humans , Meta-Analysis as Topic , Polymorphism, Single Nucleotide/genetics , Protein Binding
7.
Acta Ophthalmol ; 96(7): e811-e819, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30178632

ABSTRACT

PURPOSE: Diabetic retinopathy is the most common eye complication in patients with diabetes. The purpose of this study is to identify genetic factors contributing to severe diabetic retinopathy. METHODS: A genome-wide association approach was applied. In the Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS) datasets, cases of severe diabetic retinopathy were defined as type 2 diabetic patients who were ever graded as having severe background retinopathy (Level R3) or proliferative retinopathy (Level R4) in at least one eye according to the Scottish Diabetic Retinopathy Grading Scheme or who were once treated by laser photocoagulation. Controls were diabetic individuals whose longitudinal retinopathy screening records were either normal (Level R0) or only with mild background retinopathy (Level R1) in both eyes. Significant Single Nucleotide Polymorphisms (SNPs) were taken forward for meta-analysis using multiple Caucasian cohorts. RESULTS: Five hundred and sixty cases of type 2 diabetes with severe diabetic retinopathy and 4,106 controls were identified in the GoDARTS cohort. We revealed that rs3913535 in the NADPH Oxidase 4 (NOX4) gene reached a p value of 4.05 × 10-9 . Two nearby SNPs, rs10765219 and rs11018670 also showed promising p values (p values = 7.41 × 10-8 and 1.23 × 10-8 , respectively). In the meta-analysis using multiple Caucasian cohorts (excluding GoDARTS), rs10765219 and rs11018670 showed associations for diabetic retinopathy (p = 0.003 and 0.007, respectively), while the p value of rs3913535 was not significant (p = 0.429). CONCLUSION: This genome-wide association study of severe diabetic retinopathy suggests new evidence for the involvement of the NOX4 gene.


Subject(s)
Diabetes Mellitus, Type 2/complications , Diabetic Retinopathy/genetics , NADPH Oxidase 4/genetics , Polymorphism, Single Nucleotide , Adult , Diabetic Retinopathy/etiology , Diabetic Retinopathy/surgery , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotyping Techniques , Humans , Laser Coagulation , Male , Middle Aged , Scotland , White People/genetics
9.
Nat Genet ; 50(4): 559-571, 2018 04.
Article in English | MEDLINE | ID: mdl-29632382

ABSTRACT

We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10-7); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent 'false leads' with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Alleles , Chromosome Mapping/statistics & numerical data , Diabetes Mellitus, Type 2/classification , Diabetes Mellitus, Type 2/physiopathology , Female , Genetic Predisposition to Disease , Genetic Variation , Genome-Wide Association Study/statistics & numerical data , Humans , Male , White People/genetics , Exome Sequencing/statistics & numerical data
10.
Diabetes ; 66(12): 3130-3141, 2017 12.
Article in English | MEDLINE | ID: mdl-28951389

ABSTRACT

Results from observational studies examining dyslipidemia as a risk factor for diabetic retinopathy (DR) have been inconsistent. We evaluated the causal relationship between plasma lipids and DR using a Mendelian randomization approach. We pooled genome-wide association studies summary statistics from 18 studies for two DR phenotypes: any DR (N = 2,969 case and 4,096 control subjects) and severe DR (N = 1,277 case and 3,980 control subjects). Previously identified lipid-associated single nucleotide polymorphisms served as instrumental variables. Meta-analysis to combine the Mendelian randomization estimates from different cohorts was conducted. There was no statistically significant change in odds ratios of having any DR or severe DR for any of the lipid fractions in the primary analysis that used single nucleotide polymorphisms that did not have a pleiotropic effect on another lipid fraction. Similarly, there was no significant association in the Caucasian and Chinese subgroup analyses. This study did not show evidence of a causal role of the four lipid fractions on DR. However, the study had limited power to detect odds ratios less than 1.23 per SD in genetically induced increase in plasma lipid levels, thus we cannot exclude that causal relationships with more modest effect sizes exist.


Subject(s)
Diabetic Retinopathy/etiology , Lipids/blood , Mendelian Randomization Analysis , Aged , Diabetic Retinopathy/blood , Female , Genome-Wide Association Study , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Risk
11.
PLoS Genet ; 13(5): e1006728, 2017 May.
Article in English | MEDLINE | ID: mdl-28498854

ABSTRACT

Hypertension is a leading cause of global disease, mortality, and disability. While individuals of African descent suffer a disproportionate burden of hypertension and its complications, they have been underrepresented in genetic studies. To identify novel susceptibility loci for blood pressure and hypertension in people of African ancestry, we performed both single and multiple-trait genome-wide association analyses. We analyzed 21 genome-wide association studies comprised of 31,968 individuals of African ancestry, and validated our results with additional 54,395 individuals from multi-ethnic studies. These analyses identified nine loci with eleven independent variants which reached genome-wide significance (P < 1.25×10-8) for either systolic and diastolic blood pressure, hypertension, or for combined traits. Single-trait analyses identified two loci (TARID/TCF21 and LLPH/TMBIM4) and multiple-trait analyses identified one novel locus (FRMD3) for blood pressure. At these three loci, as well as at GRP20/CDH17, associated variants had alleles common only in African-ancestry populations. Functional annotation showed enrichment for genes expressed in immune and kidney cells, as well as in heart and vascular cells/tissues. Experiments driven by these findings and using angiotensin-II induced hypertension in mice showed altered kidney mRNA expression of six genes, suggesting their potential role in hypertension. Our study provides new evidence for genes related to hypertension susceptibility, and the need to study African-ancestry populations in order to identify biologic factors contributing to hypertension.


Subject(s)
Blood Pressure/genetics , Genetic Loci , Hypertension/genetics , Multifactorial Inheritance , Black or African American/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Cadherins/genetics , Case-Control Studies , Female , Genome-Wide Association Study , Humans , Hypertension/ethnology , Male , Membrane Proteins/genetics , Mice , Polymorphism, Single Nucleotide
12.
Hum Mol Genet ; 26(11): 2156-2163, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28379451

ABSTRACT

Plasma fetuin-A is associated with type 2 diabetes, and AHSG, the gene encoding fetuin-A, has been identified as a susceptibility locus for diabetes and metabolic syndrome. Thus far, unbiased investigations of the genetic determinants of plasma fetuin-A concentrations have not been conducted. We searched for single nucleotide polymorphisms (SNPs) related to fetuin-A concentrations by a genome-wide association study in six population-based studies. We examined the association of fetuin-A levels with ∼ 2.5 million genotyped and imputed SNPs in 9,055 participants of European descent and 2,119 African Americans. In both ethnicities, the strongest associations were centered in a region with a high degree of LD near the AHSG locus. Among 136 genome-wide significant (P < 0.05 × 10-8) SNPs near the AHSG locus, the top SNP was rs4917 (P =1.27 × 10-303), a known coding SNP in exon 6 that is associated with a 0.06 g/l (∼13%) lower fetuin-A level. This variant alone explained 14% of the variation in fetuin-A levels. Analyses conditioned on rs4917 indicated that the strong association with the AHSG locus stems from additional independent associations of multiple variants among European Americans. In conclusion, levels of fetuin-A in plasma are strongly associated with SNPs in its encoding gene, AHSG, but not elsewhere in the genome. Given the strength of the associations observed for multiple independent SNPs, the AHSG gene is an example of a candidate locus suitable for additional investigations including fine mapping to elucidate the biological basis of the findings and further functional experiments to clarify AHSG as a potential therapeutic target.


Subject(s)
alpha-2-HS-Glycoprotein/analysis , alpha-2-HS-Glycoprotein/genetics , Adult , Black or African American/genetics , Aged , Diabetes Mellitus, Type 2/genetics , Female , Genetic Loci , Genome-Wide Association Study , Genotype , Humans , Male , Metabolic Syndrome/genetics , Middle Aged , Polymorphism, Single Nucleotide/genetics , White People/genetics , alpha-2-HS-Glycoprotein/metabolism
13.
Diabetes ; 65(10): 3200-11, 2016 10.
Article in English | MEDLINE | ID: mdl-27416945

ABSTRACT

Genome-wide association studies (GWAS) have found few common variants that influence fasting measures of insulin sensitivity. We hypothesized that a GWAS of an integrated assessment of fasting and dynamic measures of insulin sensitivity would detect novel common variants. We performed a GWAS of the modified Stumvoll Insulin Sensitivity Index (ISI) within the Meta-Analyses of Glucose and Insulin-Related Traits Consortium. Discovery for genetic association was performed in 16,753 individuals, and replication was attempted for the 23 most significant novel loci in 13,354 independent individuals. Association with ISI was tested in models adjusted for age, sex, and BMI and in a model analyzing the combined influence of the genotype effect adjusted for BMI and the interaction effect between the genotype and BMI on ISI (model 3). In model 3, three variants reached genome-wide significance: rs13422522 (NYAP2; P = 8.87 × 10(-11)), rs12454712 (BCL2; P = 2.7 × 10(-8)), and rs10506418 (FAM19A2; P = 1.9 × 10(-8)). The association at NYAP2 was eliminated by conditioning on the known IRS1 insulin sensitivity locus; the BCL2 and FAM19A2 associations were independent of known cardiometabolic loci. In conclusion, we identified two novel loci and replicated known variants associated with insulin sensitivity. Further studies are needed to clarify the causal variant and function at the BCL2 and FAM19A2 loci.


Subject(s)
Chemokines, CC/genetics , Genome-Wide Association Study/methods , Insulin Resistance/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Chemokines, CC/physiology , Female , Genetic Predisposition to Disease/genetics , Humans , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/physiology , Male , Polymorphism, Single Nucleotide/genetics , Proto-Oncogene Proteins c-bcl-2/physiology
14.
Genet Epidemiol ; 40(3): 244-52, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27027517

ABSTRACT

For complex traits, most associated single nucleotide variants (SNV) discovered to date have a small effect, and detection of association is only possible with large sample sizes. Because of patient confidentiality concerns, it is often not possible to pool genetic data from multiple cohorts, and meta-analysis has emerged as the method of choice to combine results from multiple studies. Many meta-analysis methods are available for single SNV analyses. As new approaches allow the capture of low frequency and rare genetic variation, it is of interest to jointly consider multiple variants to improve power. However, for the analysis of haplotypes formed by multiple SNVs, meta-analysis remains a challenge, because different haplotypes may be observed across studies. We propose a two-stage meta-analysis approach to combine haplotype analysis results. In the first stage, each cohort estimate haplotype effect sizes in a regression framework, accounting for relatedness among observations if appropriate. For the second stage, we use a multivariate generalized least square meta-analysis approach to combine haplotype effect estimates from multiple cohorts. Haplotype-specific association tests and a global test of independence between haplotypes and traits are obtained within our framework. We demonstrate through simulation studies that we control the type-I error rate, and our approach is more powerful than inverse variance weighted meta-analysis of single SNV analysis when haplotype effects are present. We replicate a published haplotype association between fasting glucose-associated locus (G6PC2) and fasting glucose in seven studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium and we provide more precise haplotype effect estimates.


Subject(s)
Genetic Association Studies , Haplotypes/genetics , Meta-Analysis as Topic , Aging , Co-Repressor Proteins , Cohort Studies , DNA-Binding Proteins , Fasting/metabolism , Female , Genetic Variation/genetics , Glucose/metabolism , Glucose-6-Phosphatase/genetics , Heart , Humans , Least-Squares Analysis , Male , Models, Genetic , Molecular Epidemiology , Multivariate Analysis , Neoplasm Proteins/genetics , Phenotype , Reproducibility of Results , Research Design
15.
Circ Cardiovasc Genet ; 9(1): 45-54, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26567291

ABSTRACT

BACKGROUND: There is increasing evidence that retinal microvascular diameters are associated with cardiovascular and cerebrovascular conditions. The shared genetic effects of these associations are currently unknown. The aim of this study was to increase our understanding of the genetic factors that mediate retinal vessel size. METHODS AND RESULTS: This study extends previous genome-wide association study results using 24 000+ multiethnic participants from 7 discovery cohorts and 5000+ subjects of European ancestry from 2 replication cohorts. Using the Illumina HumanExome BeadChip, we investigate the association of single-nucleotide polymorphisms and variants collectively across genes with summary measures of retinal vessel diameters, referred to as the central retinal venule equivalent and the central retinal arteriole equivalent. We report 4 new loci associated with central retinal venule equivalent, one of which is also associated with central retinal arteriole equivalent. The 4 single-nucleotide polymorphisms are rs7926971 in TEAD1 (P=3.1×10(-) (11); minor allele frequency=0.43), rs201259422 in TSPAN10 (P=4.4×10(-9); minor allele frequency=0.27), rs5442 in GNB3 (P=7.0×10(-10); minor allele frequency=0.05), and rs1800407 in OCA2 (P=3.4×10(-8); minor allele frequency=0.05). The latter single-nucleotide polymorphism, rs1800407, was also associated with central retinal arteriole equivalent (P=6.5×10(-12)). Results from the gene-based burden tests were null. In phenotype look-ups, single-nucleotide polymorphism rs201255422 was associated with both systolic (P=0.001) and diastolic blood pressures (P=8.3×10(-04)). CONCLUSIONS: Our study expands the understanding of genetic factors influencing the size of the retinal microvasculature. These findings may also provide insight into the relationship between retinal and systemic microvascular disease.


Subject(s)
DNA-Binding Proteins/genetics , Genetic Loci , Nuclear Proteins/genetics , Polymorphism, Single Nucleotide , Retinal Artery , Retinal Vein , Tetraspanins/genetics , Transcription Factors/genetics , Adult , Aged , Aged, 80 and over , Alleles , Arterioles , Female , Gene Frequency , Humans , Male , Middle Aged , TEA Domain Transcription Factors , Venules
16.
Atherosclerosis ; 239(2): 539-46, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25725316

ABSTRACT

OBJECTIVE: Fibrosis has been implicated in a number of pathological, organ-based conditions of the liver, kidney, heart, and lungs. The objective of this study was to determine whether biomarkers of fibrosis are associated with vascular disease in the large and/or small vessels. METHODS: We evaluated the associations of two circulating biomarkers of fibrosis, transforming growth factor-ß (TGF-ß) and procollagen type III N-terminal propeptide (PIIINP), with incident peripheral artery disease (PAD) and subclinical macrovascular (carotid intima-media thickness, flow-mediated vasodilation, ankle-brachial index, retinal vein diameter), and microvascular (retinal artery diameter and retinopathy) disease among older adults in the Cardiovascular Health Study. We measured TGF-ß and PIIINP from samples collected in 1996 and ascertained clinical PAD through 2011. Measurements of large and small vessels were collected between 1996 and 1998. RESULTS: After adjustment for sociodemographic, clinical, and biochemical risk factors, TGF-ß was associated with incident PAD (hazard ratio [HR] = 1.36 per doubling of TGF-ß, 95% confidence interval [CI] = 1.04, 1.78) and retinal venular diameter (1.63 µm per doubling of TGF-ß, CI = 0.23, 3.02). PIIINP was not associated with incident PAD, but was associated with carotid intima-media thickness (0.102 mm per doubling of PIIINP, CI = 0.029, 0.174) and impaired brachial artery reactivity (-0.20% change per doubling of PIIINP, CI = -0.39, -0.02). Neither TGF-ß nor PIIINP were associated with retinal arteriolar diameter or retinopathy. CONCLUSIONS: Serum concentrations of fibrosis-related biomarkers were associated with several measures of large vessel disease, including incident PAD, but not with small vessel disease. Fibrosis may contribute to large vessel atherosclerosis in older adults.


Subject(s)
Biomarkers/blood , Carotid Artery Diseases/blood , Peptide Fragments/blood , Peripheral Arterial Disease/blood , Procollagen/blood , Retinal Diseases/blood , Transforming Growth Factor beta/blood , Aged , Ankle Brachial Index , Brachial Artery/physiopathology , Carotid Artery Diseases/diagnosis , Carotid Artery Diseases/epidemiology , Carotid Artery Diseases/physiopathology , Carotid Intima-Media Thickness , Cross-Sectional Studies , Female , Fibrosis , Humans , Incidence , Male , Peripheral Arterial Disease/diagnosis , Peripheral Arterial Disease/epidemiology , Peripheral Arterial Disease/physiopathology , Predictive Value of Tests , Prognosis , Prospective Studies , Retinal Diseases/diagnosis , Retinal Diseases/epidemiology , Retinal Diseases/physiopathology , Risk Factors , United States/epidemiology , Vasodilation
17.
Invest Ophthalmol Vis Sci ; 55(10): 6839-50, 2014 Sep 09.
Article in English | MEDLINE | ID: mdl-25205864

ABSTRACT

PURPOSE: Substantial progress has been made in identifying susceptibility variants for AMD in European populations; however, few studies have been conducted to understand the role these variants play in AMD risk in diverse populations. The present study aims to examine AMD risk across diverse populations in known and suspected AMD complement factor and lipid-related loci. METHODS: Targeted genotyping was performed across study sites for AMD and lipid trait-associated single nucleotide polymorphism (SNPs). Genetic association tests were performed at individual sites and then meta-analyzed using logistic regression assuming an additive genetic model stratified by self-described race/ethnicity. Participants included cases with early or late AMD and controls with no signs of AMD as determined by fundus photography. Populations included in this study were European Americans, African Americans, Mexican Americans, and Singaporeans from the Population Architecture using Genomics and Epidemiology (PAGE) study. RESULTS: Index variants of AMD, rs1061170 (CFH) and rs10490924 (ARMS2), were associated with AMD at P=3.05×10(-8) and P=6.36×10(-6), respectively, in European Americans. In general, none of the major AMD index variants generalized to our non-European populations with the exception of rs10490924 in Mexican Americans at an uncorrected P value<0.05. Four lipid-associated SNPS (LPL rs328, TRIB1 rs6987702, CETP rs1800775, and KCTD10/MVK rs2338104) were associated with AMD in African Americans and Mexican Americans (P<0.05), but these associations did not survive strict corrections for multiple testing. CONCLUSIONS: While most associations did not generalize in the non-European populations, variants within lipid-related genes were found to be associated with AMD. This study highlights the need for larger well-powered studies in non-European populations.


Subject(s)
DNA/genetics , Ethnicity/genetics , Genetic Predisposition to Disease , Macular Degeneration/genetics , Polymorphism, Single Nucleotide , Proteins/genetics , Adult , Aged , Aged, 80 and over , Complement Factor H/genetics , Complement Factor H/metabolism , Female , Gene Frequency , Genotype , Humans , Macular Degeneration/ethnology , Macular Degeneration/metabolism , Male , Middle Aged , Phenotype , Prevalence , Prospective Studies , Proteins/metabolism , Risk Factors , United States/epidemiology
18.
PLoS Genet ; 10(8): e1004517, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25102180

ABSTRACT

Type 2 diabetes (T2D) is more prevalent in African Americans than in Europeans. However, little is known about the genetic risk in African Americans despite the recent identification of more than 70 T2D loci primarily by genome-wide association studies (GWAS) in individuals of European ancestry. In order to investigate the genetic architecture of T2D in African Americans, the MEta-analysis of type 2 DIabetes in African Americans (MEDIA) Consortium examined 17 GWAS on T2D comprising 8,284 cases and 15,543 controls in African Americans in stage 1 analysis. Single nucleotide polymorphisms (SNPs) association analysis was conducted in each study under the additive model after adjustment for age, sex, study site, and principal components. Meta-analysis of approximately 2.6 million genotyped and imputed SNPs in all studies was conducted using an inverse variance-weighted fixed effect model. Replications were performed to follow up 21 loci in up to 6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry. We identified three known loci (TCF7L2, HMGA2 and KCNQ1) and two novel loci (HLA-B and INS-IGF2) at genome-wide significance (4.15 × 10(-94)

Subject(s)
Diabetes Mellitus, Type 2/genetics , HLA-B27 Antigen/genetics , HMGA2 Protein/genetics , KCNQ1 Potassium Channel/genetics , Mutant Chimeric Proteins/genetics , Transcription Factor 7-Like 2 Protein/genetics , Black or African American/genetics , Diabetes Mellitus, Type 2/pathology , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide
19.
PLoS Genet ; 10(2): e1004123, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24586183

ABSTRACT

Autoimmune thyroid diseases (AITD) are common, affecting 2-5% of the general population. Individuals with positive thyroid peroxidase antibodies (TPOAbs) have an increased risk of autoimmune hypothyroidism (Hashimoto's thyroiditis), as well as autoimmune hyperthyroidism (Graves' disease). As the possible causative genes of TPOAbs and AITD remain largely unknown, we performed GWAS meta-analyses in 18,297 individuals for TPOAb-positivity (1769 TPOAb-positives and 16,528 TPOAb-negatives) and in 12,353 individuals for TPOAb serum levels, with replication in 8,990 individuals. Significant associations (P<5×10(-8)) were detected at TPO-rs11675434, ATXN2-rs653178, and BACH2-rs10944479 for TPOAb-positivity, and at TPO-rs11675434, MAGI3-rs1230666, and KALRN-rs2010099 for TPOAb levels. Individual and combined effects (genetic risk scores) of these variants on (subclinical) hypo- and hyperthyroidism, goiter and thyroid cancer were studied. Individuals with a high genetic risk score had, besides an increased risk of TPOAb-positivity (OR: 2.18, 95% CI 1.68-2.81, P = 8.1×10(-8)), a higher risk of increased thyroid-stimulating hormone levels (OR: 1.51, 95% CI 1.26-1.82, P = 2.9×10(-6)), as well as a decreased risk of goiter (OR: 0.77, 95% CI 0.66-0.89, P = 6.5×10(-4)). The MAGI3 and BACH2 variants were associated with an increased risk of hyperthyroidism, which was replicated in an independent cohort of patients with Graves' disease (OR: 1.37, 95% CI 1.22-1.54, P = 1.2×10(-7) and OR: 1.25, 95% CI 1.12-1.39, P = 6.2×10(-5)). The MAGI3 variant was also associated with an increased risk of hypothyroidism (OR: 1.57, 95% CI 1.18-2.10, P = 1.9×10(-3)). This first GWAS meta-analysis for TPOAbs identified five newly associated loci, three of which were also associated with clinical thyroid disease. With these markers we identified a large subgroup in the general population with a substantially increased risk of TPOAbs. The results provide insight into why individuals with thyroid autoimmunity do or do not eventually develop thyroid disease, and these markers may therefore predict which TPOAb-positives are particularly at risk of developing clinical thyroid dysfunction.


Subject(s)
Autoantibodies/genetics , Graves Disease/genetics , Hashimoto Disease/genetics , Iodide Peroxidase/genetics , Autoantibodies/isolation & purification , Genetic Loci , Genome-Wide Association Study , Graves Disease/pathology , Hashimoto Disease/pathology , Humans , Iodide Peroxidase/immunology , Risk Factors , Thyroiditis, Autoimmune , Thyrotropin/metabolism
20.
PLoS One ; 8(7): e67650, 2013.
Article in English | MEDLINE | ID: mdl-23844046

ABSTRACT

INTRODUCTION: C-reactive protein (CRP) levels are associated with cardiovascular disease and systemic inflammation. We assessed whether CRP-associated loci were associated with serum CRP and retinal markers of microvascular disease, in Asian populations. METHODS: Genome-wide association analysis (GWAS) for serum CRP was performed in East-Asian Chinese (N = 2,434) and Malays (N = 2,542) and South-Asian Indians (N = 2,538) from Singapore. Leveraging on GWAS data, we assessed, in silico, association levels among the Singaporean datasets for 22 recently identified CRP-associated loci. At loci where directional inconsistencies were observed, quantification of inter-ethnic linkage disequilibrium (LD) difference was determined. Next, we assessed association for a variant at CRP and retinal vessel traits [central retinal artery equivalent (CRAE) and central retinal vein equivalent (CRVE)] in a total of 24,132 subjects of East-Asian, South-Asian and European ancestry. RESULTS: Serum CRP was associated with SNPs in/near APOE, CRP, HNF1A and LEPR (p-values ≤4.7×10(-8)) after meta-analysis of Singaporean populations. Using a candidate-SNP approach, we further replicated SNPs at 4 additional loci that had been recently identified to be associated with serum CRP (IL6R, GCKR, IL6 and IL1F10) (p-values ≤0.009), in the Singaporean datasets. SNPs from these 8 loci explained 4.05% of variance in serum CRP. Two SNPs (rs2847281 and rs6901250) were detected to be significant (p-value ≤0.036) but with opposite effect directions in the Singaporean populations as compared to original European studies. At these loci we did not detect significant inter-population LD differences. We further did not observe a significant association between CRP variant and CRVE or CRAE levels after meta-analysis of all Singaporean and European datasets (p-value >0.058). CONCLUSIONS: Common variants associated with serum CRP, first detected in primarily European studies, are also associated with CRP levels in East-Asian and South-Asian populations. We did not find a causal link between CRP and retinal measures of microvascular disease.


Subject(s)
Asian People , C-Reactive Protein/genetics , Genome-Wide Association Study , Microvessels/metabolism , Retinal Artery/metabolism , Retinal Vein/metabolism , Adult , Apolipoproteins E/genetics , Cytokines/genetics , Female , Genetic Loci , Hepatocyte Nuclear Factor 1-alpha/genetics , Humans , Linkage Disequilibrium , Male , Microvessels/pathology , Middle Aged , Polymorphism, Single Nucleotide , Receptors, Leptin/genetics , Retinal Artery/pathology , Retinal Vein/pathology , Singapore , White People
SELECTION OF CITATIONS
SEARCH DETAIL
...