Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
J Acquir Immune Defic Syndr ; 96(4): 350-360, 2024 08 01.
Article in English | MEDLINE | ID: mdl-38916429

ABSTRACT

BACKGROUND: An effective vaccine is required to end the HIV pandemic. We evaluated the safety and immunogenicity of a DNA (DNA-HIV-PT123) vaccine with low- or high-dose bivalent (TV1.C and 1086.C glycoprotein 120) subtype C envelope protein combinations, adjuvanted with MF59 or AS01B. METHODS: HIV Vaccine Trials Network (HVTN)108 was a randomized, placebo-controlled, double-blind, phase 1/2a trial conducted in the United States and South Africa. HIV-negative adults were randomly assigned to 1 of 7 intervention arms or placebo to assess DNA prime with DNA/protein/adjuvant boosts, DNA/protein/adjuvant co-administration, and low-dose protein/adjuvant regimens. HVTN111 trial participants who received an identical regimen were also included. Outcomes included safety and immunogenicity 2 weeks and 6 months after final vaccination. RESULTS: From June 2016 to July 2018, 400 participants were enrolled (N = 334 HVTN108, N = 66 HVTN111); 370 received vaccine and 30 received placebo. There were 48 grade 3 and 3 grade 4 reactogenicity events among 39/400 (9.8%) participants, and 32 mild/moderate-related adverse events in 23/400 (5.8%) participants. All intervention groups demonstrated high IgG response rates (>89%) and high magnitudes to HIV-1 Env gp120 and gp140 proteins; response rates for AS01B-adjuvanted groups approached 100%. V1V2 IgG magnitude, Fc-mediated functions, IgG3 Env response rates, and CD4+ T-cell response magnitudes and rates were higher in the AS01B-adjuvanted groups. The AS01B-adjuvanted low-dose protein elicited greater IgG responses than the higher protein dose. CONCLUSIONS: The vaccine regimens were generally well tolerated. Co-administration of DNA with AS01B-adjuvanted bivalent Env gp120 elicited the strongest humoral responses; AS01B-adjuvanted regimens elicited stronger CD4+ T-cell responses, justifying further evaluation.ClinicalTrials.gov registration: NCT02915016, registered 26 September 2016.


Subject(s)
AIDS Vaccines , Adjuvants, Immunologic , HIV Antibodies , HIV Envelope Protein gp120 , HIV Infections , HIV-1 , Polysorbates , Squalene , Vaccines, DNA , Humans , AIDS Vaccines/immunology , AIDS Vaccines/administration & dosage , AIDS Vaccines/adverse effects , Vaccines, DNA/immunology , Vaccines, DNA/administration & dosage , Vaccines, DNA/adverse effects , Female , Male , Adult , Squalene/administration & dosage , Polysorbates/administration & dosage , HIV Envelope Protein gp120/immunology , Adjuvants, Immunologic/administration & dosage , HIV-1/immunology , HIV Infections/immunology , HIV Infections/prevention & control , HIV Antibodies/blood , Double-Blind Method , Middle Aged , Young Adult , Adjuvants, Vaccine/administration & dosage , South Africa , Immunogenicity, Vaccine , Adolescent , United States
2.
J Infect Dis ; 217(5): 693-702, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29216395

ABSTRACT

Background: DSM265 is a selective inhibitor of Plasmodium dihydroorotate dehydrogenase that fully protected against controlled human malarial infection (CHMI) by direct venous inoculation of Plasmodium falciparum sporozoites when administered 1 day before challenge and provided partial protection when administered 7 days before challenge. Methods: A double-blinded, randomized, placebo-controlled trial was performed to assess safety, tolerability, pharmacokinetics, and efficacy of 1 oral dose of 400 mg of DSM265 before CHMI. Three cohorts were studied, with DSM265 administered 3 or 7 days before direct venous inoculation of sporozoites or 7 days before 5 bites from infected mosquitoes. Results: DSM265-related adverse events consisted of mild-to-moderate headache and gastrointestinal symptoms. DSM265 concentrations were consistent with pharmacokinetic models (mean area under the curve extrapolated to infinity, 1707 µg*h/mL). Placebo-treated participants became positive by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and were treated 7-10 days after CHMI. Among DSM265-treated subjects, 2 of 6 in each cohort were sterilely protected. DSM265-treated recipients had longer times to development of parasitemia than placebo-treated participants (P < .004). Conclusions: This was the first CHMI study of a novel antimalarial compound to compare direct venous inoculation of sporozoites and mosquito bites. Times to qRT-PCR positivity and treatment were comparable for both routes. DSM265 given 3 or 7 days before CHMI was safe and well tolerated but sterilely protected only one third of participants.


Subject(s)
Antimalarials/administration & dosage , Chemoprevention/methods , Malaria, Falciparum/prevention & control , Pyrimidines/administration & dosage , Triazoles/administration & dosage , Adolescent , Adult , Animals , Antimalarials/adverse effects , Antimalarials/pharmacokinetics , Double-Blind Method , Drug-Related Side Effects and Adverse Reactions/epidemiology , Drug-Related Side Effects and Adverse Reactions/pathology , Female , Humans , Male , Middle Aged , Parasitemia/prevention & control , Placebos/administration & dosage , Plasmodium falciparum/genetics , Plasmodium falciparum/isolation & purification , Pyrimidines/adverse effects , Pyrimidines/pharmacokinetics , Real-Time Polymerase Chain Reaction , Treatment Outcome , Triazoles/adverse effects , Triazoles/pharmacokinetics , Young Adult
4.
J Virol ; 83(3): 1456-64, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19019948

ABSTRACT

Adeno-associated virus (AAV) replication and biology have been extensively studied using cell culture systems, but there is precious little known about AAV biology in natural hosts. As part of our ongoing interest in the in vivo biology of AAV, we previously described the existence of extrachromosomal proviral AAV genomes in human tissues. In the current work, we describe the molecular structure of infectious DNA clones derived directly from these tissues. Sequence-specific linear rolling-circle amplification was utilized to isolate clones of native circular AAV DNA. Several molecular clones containing unit-length viral genomes directed the production of infectious wild-type AAV upon DNA transfection in the presence of adenovirus help. DNA sequence analysis of the molecular clones revealed the ubiquitous presence of a double-D inverted terminal repeat (ITR) structure, which implied a mechanism by which the virus is able to maintain ITR sequence continuity and persist in the absence of host chromosome integration. These data suggest that the natural life cycle of AAV, unlike that of retroviruses, might not have genome integration as an obligatory component.


Subject(s)
Dependovirus/pathogenicity , Adolescent , Base Sequence , Blotting, Western , Child , Child, Preschool , Cloning, Molecular , DNA Primers , Dependovirus/genetics , Dependovirus/isolation & purification , HeLa Cells , Humans , Polymerase Chain Reaction , Virulence
5.
J Virol ; 79(23): 14793-803, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16282479

ABSTRACT

Infection with wild-type adeno-associated virus (AAV) is common in humans, but very little is known about the in vivo biology of AAV. On a molecular level, it has been shown in cultured cells that AAV integrates in a site-specific manner on human chromosome 19, but this has never been demonstrated directly in infected human tissues. To that end, we tested 175 tissue samples for the presence of AAV DNA, and when present, examined the specific form of the viral DNA. AAV was detected in 7 of 101 tonsil-adenoid samples and in 2 of 74 other tissue samples (spleen and lung). In these nine samples, we were unable to detect AAV integration in the AAVS1 locus using a sensitive PCR assay designed to amplify specific viral-cellular DNA junctions. Additionally, we used a second complementary assay, linear amplification-mediated-PCR (LAM-PCR) to widen our search for integration events. Analysis of individual LAM-PCR products revealed that the AAV genomes were arranged predominantly in a head-to-tail array, with deletions and extensive rearrangements in the inverted terminal repeat sequences. A single AAV-cellular junction was identified from a tonsil sample and it mapped to a highly repetitive satellite DNA element on chromosome 1. Given these data, we entertained the possibility that instead of integrated forms, AAV genomes were present as extrachromosomal forms. We used a novel amplification assay (linear rolling-circle amplification) to show that the majority of wild-type AAV DNA existed as circular double-stranded episomes in our tissues. Thus, following naturally acquired infection, AAV DNA can persist mainly as circular episomes in human tissues. These findings are consistent with the circular episomal forms of recombinant AAV vectors that have been isolated and characterized from in vivo transduced tissues.


Subject(s)
Dependovirus/genetics , Chromosomes, Human, Pair 1 , DNA, Viral/analysis , Dependovirus/physiology , HeLa Cells , Humans , Lung/virology , Palatine Tonsil/virology , Polymerase Chain Reaction , Spleen/virology , Terminal Repeat Sequences/genetics , Virus Integration/physiology
6.
J Virol ; 79(23): 14781-92, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16282478

ABSTRACT

Although adeno-associated virus (AAV) infection is common in humans, the biology of natural infection is poorly understood. Since it is likely that many primary AAV infections occur during childhood, we set out to characterize the frequency and complexity of circulating AAV isolates in fresh and archived frozen human pediatric tissues. Total cellular DNA was isolated from 175 tissue samples including freshly collected tonsils (n = 101) and archived frozen samples representing spleen (n = 21), lung (n = 16), muscle (n = 15), liver (n = 19), and heart (n = 3). Samples were screened for the presence of AAV and adenovirus sequences by PCR using degenerate primers. AAV DNA was detected in 7 of 101 (7%) tonsil samples and two of 74 other tissues (one spleen and one lung). Adenovirus sequences were identified in 19 of 101 tonsils (19%), but not in any other tissues. Complete capsid gene sequences were recovered from all nine AAV-positive tissues. Sequence analyses showed that eight of the capsid sequences were AAV2-like (approximately 98% amino acid identity), while the single spleen isolate was intermediate between serotypes 2 and 3. Comparison to the available AAV2 crystal structure revealed that the majority of the amino acid substitutions mapped to surface-exposed hypervariable domains. To further characterize the AAV capsid structure in these samples, we used a novel linear rolling-circle amplification method to amplify episomal AAV DNA and isolate infectious molecular clones from several human tissues. Serotype 2-like viruses were generated from these DNA clones and interestingly, failed to bind to a heparin sulfate column. Inspection of the capsid sequence from these two clones (and the other six AAV2-like isolates) revealed that they lacked arginine residues at positions 585 and 588 of the capsid protein, which are thought to be essential for interaction with the heparin sulfate proteoglycan coreceptor. These data provide a framework with which to explore wild-type AAV persistence in vivo and provide additional tools to further define the biodistribution and form of AAV in human tissues.


Subject(s)
Capsid Proteins/metabolism , Dependovirus/genetics , Parvoviridae Infections/genetics , Amino Acid Sequence , Capsid Proteins/genetics , Child , DNA, Viral/chemistry , Dependovirus/isolation & purification , Heparin/metabolism , Humans , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction
7.
Pediatr Neurol ; 28(4): 292-4, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12849883

ABSTRACT

Virus-induced autoimmunity may play a causal role in autism. To examine the etiologic link of viruses in this brain disorder, we conducted a serologic study of measles virus, mumps virus, and rubella virus. Viral antibodies were measured by enzyme-linked immunosorbent assay in the serum of autistic children, normal children, and siblings of autistic children. The level of measles antibody, but not mumps or rubella antibodies, was significantly higher in autistic children as compared with normal children (P = 0.003) or siblings of autistic children (P

Subject(s)
Antibodies, Viral/blood , Autistic Disorder/diagnosis , Autoimmune Diseases/diagnosis , Measles virus/immunology , Autistic Disorder/immunology , Autoimmune Diseases/immunology , Child , Child, Preschool , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoblotting , Male , Measles/immunology , Measles/prevention & control , Measles Vaccine/adverse effects , Measles Vaccine/immunology , Measles-Mumps-Rubella Vaccine/adverse effects , Measles-Mumps-Rubella Vaccine/immunology , Molecular Weight , Mumps virus/immunology , Rubella virus/immunology , Viral Proteins/immunology , Virus Activation/immunology
SELECTION OF CITATIONS
SEARCH DETAIL