Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Environ Sci (China) ; 147: 189-199, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003039

ABSTRACT

China's lowland rural rivers are facing severe eutrophication problems due to excessive phosphorus (P) from anthropogenic activities. However, quantifying P dynamics in a lowland rural river is challenging due to its complex interaction with surrounding areas. A P dynamic model (River-P) was specifically designed for lowland rural rivers to address this challenge. This model was coupled with the Environmental Fluid Dynamics Code (EFDC) and the Phosphorus Dynamic Model for lowland Polder systems (PDP) to characterize P dynamics under the impact of dredging in a lowland rural river. Based on a two-year (2020-2021) dataset from a representative lowland rural river in the Lake Taihu Basin, China, the coupled model was calibrated and achieved a model performance (R2>0.59, RMSE<0.04 mg/L) for total P (TP) concentrations. Our research in the study river revealed that (1) the time scale for the effectiveness of sediment dredging for P control was ∼300 days, with an increase in P retention capacity by 74.8 kg/year and a decrease in TP concentrations of 23% after dredging. (2) Dredging significantly reduced P release from sediment by 98%, while increased P resuspension and settling capacities by 16% and 46%, respectively. (3) The sediment-water interface (SWI) plays a critical role in P transfer within the river, as resuspension accounts for 16% of TP imports, and settling accounts for 47% of TP exports. Given the large P retention capacity of lowland rural rivers, drainage ditches and ponds with macrophytes are promising approaches to enhance P retention capacity. Our study provides valuable insights for local environmental departments, allowing a comprehensive understanding of P dynamics in lowland rural rivers. This enable the evaluation of the efficacy of sediment dredging in P control and the implementation of corresponding P control measures.


Subject(s)
Environmental Monitoring , Geologic Sediments , Phosphorus , Rivers , Water Pollutants, Chemical , Phosphorus/analysis , Rivers/chemistry , Geologic Sediments/chemistry , China , Water Pollutants, Chemical/analysis , Eutrophication
2.
Sci Total Environ ; 946: 174133, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38901574

ABSTRACT

Shifts for natural ecosystems were increasingly concerned due to its profound impacts on ecosystem services. Ponds within lowland artificial watersheds (polders) play a critical role in nitrogen (N) and phosphorus (P) cycling. From the perspective of N & P control in management practices, it is needed to determine an optimal pond area ratio for polders. For this purpose, our study proposed a process-based modelling framework to investigate the response of polder N & P loss to pond area, and thus to determine the threshold value of pond area ratio to achieve maximum N & P reduction for polders. The proposed framework included two process-based models (NDP and PDP) specially developed to describe N & P dynamics in lowland polders. To evaluate the proposed performance of the framework, it was applied to 171 polders in Zhong River Watershed in Lake Taihu Basin, eastern China. Our investigation results revealed that the correlation between polder N & P reduction rate and pond area ratio had an abrupt shift of 13.6 %, 14.7 % for N & P, respectively. Therefore, polders with a pond area ratio of 13.6-14.7 % had the largest N & P reduction (5.27 and 0.19 kg/ha). Polder size affected P reduction rate, with smaller polders (<200 ha) showing a higher P reduction rate, while it did not affect N reduction rate. Compared with annual precipitation, rainy-season precipitation more significantly (P<0.01) determined polder N & P reduction. This study demonstrated the use of our process-based framework in characterizing the shifts for the pond area ratio for polders, and thus provided technical support for N & P control of lowland areas in water management practices.

SELECTION OF CITATIONS
SEARCH DETAIL