Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.581
Filter
1.
J Immunother Cancer ; 12(7)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38964786

ABSTRACT

BACKGROUND: Esophageal cancer (ESCA) is a form of malignant tumor associated with chronic inflammation and immune dysregulation. However, the specific immune status and key mechanisms of immune regulation in this disease require further exploration. METHODS: To investigate the features of the human ESCA tumor immune microenvironment and its possible regulation, we performed mass cytometry by time of flight, single-cell RNA sequencing, multicolor fluorescence staining of tissue, and flow cytometry analyses on tumor and paracancerous tissue from treatment-naïve patients. RESULTS: We depicted the immune landscape of the ESCA and revealed that CD8+ (tissue-resident memory CD8+ T cells (CD8+ TRMs) were closely related to disease progression. We also revealed the heterogeneity of CD8+ TRMs in the ESCA tumor microenvironment (TME), which was associated with their differentiation and function. Moreover, the subset of CD8+ TRMs in tumor (called tTRMs) that expressed high levels of granzyme B and immune checkpoints was markedly decreased in the TME of advanced ESCA. We showed that tTRMs are tumor effector cells preactivated in the TME. We then demonstrated that conventional dendritic cells (cDC2s) derived from intermediate monocytes (iMos) are essential for maintaining the proliferation of CD8+ TRMs in the TME. Our preliminary study showed that hypoxia can promote the apoptosis of iMos and impede the maturation of cDC2s, which in turn reduces the proliferative capacity of CD8+ TRMs, thereby contributing to the progression of cancer. CONCLUSIONS: Our study revealed the essential antitumor roles of CD8+ TRMs and preliminarily explored the regulation of the iMo/cDC2/CD8+ TRM immune axis in the human ESCA TME.


Subject(s)
CD8-Positive T-Lymphocytes , Dendritic Cells , Esophageal Neoplasms , Tumor Microenvironment , Humans , Esophageal Neoplasms/immunology , Esophageal Neoplasms/pathology , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Monocytes/immunology , Monocytes/metabolism , Male , Female , CDC2 Protein Kinase/metabolism
3.
Poult Sci ; 103(7): 103848, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38843610

ABSTRACT

Pigeons infected with aviadenoviruses have been found worldwide. Recently, pigeon adenovirus 2 (PiAdV-2) has been widely distributed in racing pigeons in Germany. However, the epidemiology of this virus remains unclear due to the lack of a specific detection platform for PiAdV-2. In this study, we first detected PiAdV-2 positivity in racing pigeons (designated FJ21125 and FJ21128, which share 100% nucleotide identity with each other based on the fiber 2 gene) in Fujian, Southeast China. These genes shared 99.8% nucleotide identity with PiAdV-2 (GenBank No. NC_031501) but only 54.1% nucleotide identity with PiAdV-1 (GenBank No. NC024474). Then, the TaqMan-qPCR assay for the detection of PiAdV-2 was established based on fiber 2 gene characterization. The established assay had a correlation coefficient of 1.00, with an amplification efficiency of 99.0%. The minimum detection limit was 34.6 copies/µL. Only PiAdV-2 exhibited a positive fluorescent signal, and no signal was detected for other pathogens (including PiCV, FAdV-4, FAdV-8a, EDSV, PPMV-1, RVA and PiHV). The assay has good reproducibility, with a coefficient of variation less than 2.42% both intragroup and intergroup. The distributions of PiAdV-2 in fecal samples from YPDS (35 samples) and healthy (43 samples) racing pigeons from different geographical areas were investigated and were 37.14% (YPDS) and 20.93% (healthy), respectively. In summary, we developed a TaqMan-qPCR platform for the detection of PiAdV-2 infection with high sensitivity, specificity, and reproducibility. We confirmed the presence of PiAdV-2 in China, and our data suggested that there is no indication of a correlation between YPDS and PiAdV-2. This study provides more information on the pathogenesis mechanism and epidemiological surveillance of PiAdV-2.


Subject(s)
Adenoviridae Infections , Aviadenovirus , Columbidae , Real-Time Polymerase Chain Reaction , Animals , Adenoviridae Infections/veterinary , Adenoviridae Infections/diagnosis , Adenoviridae Infections/virology , Adenoviridae Infections/epidemiology , Real-Time Polymerase Chain Reaction/veterinary , Real-Time Polymerase Chain Reaction/methods , China/epidemiology , Aviadenovirus/isolation & purification , Aviadenovirus/genetics , Bird Diseases/virology , Bird Diseases/diagnosis , Poultry Diseases/virology , Poultry Diseases/diagnosis
4.
Bone ; 186: 117174, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38917962

ABSTRACT

Spinal stenosis (SS) is frequently caused by spinal ligament abnormalities, such as ossification and hypertrophy, which narrow the spinal canal and compress the spinal cord or nerve roots, leading to myelopathy or sciatic symptoms; however, the underlying pathological mechanism is poorly understood, hampering the development of effective nonsurgical treatments. Our study aims to investigate the role of co-expression hub genes in patients with spinal ligament ossification and hypertrophy. To achieve this, we conducted an integrated analysis by combining RNA-seq data of ossification of the posterior longitudinal ligament (OPLL) and microarray profiles of hypertrophy of the ligamentum flavum (HLF), consistently pinpointing CTSD as an upregulated hub gene in both OPLL and HLF. Subsequent RT-qPCR and IHC assessments confirmed the heightened expression of CTSD in human OPLL, ossification of the ligamentum flavum (OLF), and HLF samples. We observed an increase in CTSD expression in human PLL and LF primary cells during osteogenic differentiation, as indicated by western blotting (WB). To assess CTSD's impact on osteogenic differentiation, we manipulated its expression levels in human PLL and LF primary cells using siRNAs and lentivirus, as demonstrated by WB, ALP staining, and ARS. Our findings showed that suppressing CTSD hindered the osteogenic differentiation potential of PLL and LF cells, while overexpressing CTSD activated osteogenic differentiation. These findings identify CTSD as a potential therapeutic target for treating spinal stenosis associated with spinal ligament abnormalities.


Subject(s)
Ligamentum Flavum , Ossification of Posterior Longitudinal Ligament , Spinal Stenosis , Up-Regulation , Humans , Spinal Stenosis/pathology , Spinal Stenosis/genetics , Spinal Stenosis/metabolism , Up-Regulation/genetics , Ligamentum Flavum/pathology , Ligamentum Flavum/metabolism , Ossification of Posterior Longitudinal Ligament/genetics , Ossification of Posterior Longitudinal Ligament/pathology , Ossification of Posterior Longitudinal Ligament/metabolism , Osteogenesis/genetics , Cell Differentiation/genetics , Longitudinal Ligaments/pathology , Longitudinal Ligaments/metabolism , Male
5.
Pediatr Neurol ; 157: 19-28, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38848613

ABSTRACT

BACKGROUND: Prediction of outcomes in perinatal arterial ischemic stroke (PAIS) is challenging. We performed a systematic review and meta-analysis to determine whether infarct characteristics can predict outcomes in PAIS. METHODS: A systematic search was conducted using five databases in January 2023. Studies were included if the sample included children with neonatal or presumed PAIS; if infarct size, location, or laterality was indicated; and if at least one motor, cognitive, or language outcome was reported. The level of evidence and risk of bias were evaluated using the Risk of Bias in Non-Randomized Studies of Interventions tool. Meta-analyses were conducted comparing infarct size or location with neurological outcomes when at least three studies could be analyzed. RESULTS: Eighteen full-text articles were included in a systematic review with nine included in meta-analysis. Meta-analyses revealed that small strokes were associated with a lower risk of cerebral palsy/hemiplegia compared with large strokes (risk ratio [RR] = 0.263, P = 0.001) and a lower risk of epilepsy (RR = 0.182, P < 0.001). Middle cerebral artery (MCA) infarcts were not associated with a significantly different risk of cerebral palsy/hemiplegia compared with non-MCA strokes (RR = 1.220, P = 0.337). Bilateral infarcts were associated with a 48% risk of cerebral palsy/hemiplegia, a 26% risk of epilepsy, and a 58% risk of cognitive impairment. CONCLUSIONS: Larger stroke size was associated with worse outcomes across multiple domains. Widely heterogeneous reporting of infarct characteristics and outcomes limits the comparison of studies and the analysis of outcomes. More consistent reporting of infarct characteristics and outcomes will be important to advance research in this field.

7.
Front Microbiol ; 15: 1408645, 2024.
Article in English | MEDLINE | ID: mdl-38894966

ABSTRACT

Introduction: Carbohydrates, which make up 20 to 25% of tea beverages, are responsible for their flavor and bioactivity. Carbohydrates of pu-erh tea change during microbial fermentation and require further research. In this study, we examined the carbohydrate metabolism and expression of carbohydrate-active enzyme genes during the fermentation of tea leaves with Aspergillus luchuensis. Methods: Widely targeted metabolomics analysis, high-performance anion-exchange chromatography measurements, and transcriptomics were used in this study. Results: After fermentation, the levels of soluble sugar, hemicellulose, lignin, eight monosaccharides, and seven sugar alcohols increased. Meanwhile, the relative contents of polysaccharides, D-sorbitol, D-glucose, and cellulose decreased. High expression of 40 genes encoding 16 carbohydrate enzymes was observed during fermentation (FPKM>10). These genes encode L-iditol 2-dehydrogenase, pectinesterase, polygalacturonase, α-amylase, glucoamylase, endoglucanase, ß-glucosidase, ß-galactosidase, α-galactosidase, α-glucosidase, and glucose-6-phosphate isomerase, among others. Discussion: These enzymes are known to break down polysaccharides and cell wall cellulose, increasing the content of monosaccharides and soluble sugars.

8.
Front Cardiovasc Med ; 11: 1369785, 2024.
Article in English | MEDLINE | ID: mdl-38895536

ABSTRACT

Abdominal aortic aneurysm (AAA) is a significant source of mortality worldwide and carries a mortality of greater than 80% after rupture. Despite extensive efforts to develop pharmacological treatments, there is currently no effective agent to prevent aneurysm growth and rupture. Current treatment paradigms only rely on the identification and surveillance of small aneurysms, prior to ultimate open surgical or endovascular repair. Recently, regenerative therapies have emerged as promising avenues to address the degenerative changes observed in AAA. This review briefly outlines current clinical management principles, characteristics, and pharmaceutical targets of AAA. Subsequently, a thorough discussion of regenerative approaches is provided. These include cellular approaches (vascular smooth muscle cells, endothelial cells, and mesenchymal stem cells) as well as the delivery of therapeutic molecules, gene therapies, and regenerative biomaterials. Lastly, additional barriers and considerations for clinical translation are provided. In conclusion, regenerative approaches hold significant promise for in situ reversal of tissue damages in AAA, necessitating sustained research and innovation to achieve successful and translatable therapies in a new era in AAA management.

10.
Cell Res ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898113

ABSTRACT

The shift of carbon utilization from primarily glucose to other nutrients is a fundamental metabolic adaptation to cope with decreased blood glucose levels and the consequent decline in glucose oxidation. AMP-activated protein kinase (AMPK) plays crucial roles in this metabolic adaptation. However, the underlying mechanism is not fully understood. Here, we show that PDZ domain containing 8 (PDZD8), which we identify as a new substrate of AMPK activated in low glucose, is required for the low glucose-promoted glutaminolysis. AMPK phosphorylates PDZD8 at threonine 527 (T527) and promotes the interaction of PDZD8 with and activation of glutaminase 1 (GLS1), a rate-limiting enzyme of glutaminolysis. In vivo, the AMPK-PDZD8-GLS1 axis is required for the enhancement of glutaminolysis as tested in the skeletal muscle tissues, which occurs earlier than the increase in fatty acid utilization during fasting. The enhanced glutaminolysis is also observed in macrophages in low glucose or under acute lipopolysaccharide (LPS) treatment. Consistent with a requirement of heightened glutaminolysis, the PDZD8-T527A mutation dampens the secretion of pro-inflammatory cytokines in macrophages in mice treated with LPS. Together, we have revealed an AMPK-PDZD8-GLS1 axis that promotes glutaminolysis ahead of increased fatty acid utilization under glucose shortage.

11.
Environ Sci Technol ; 58(26): 11661-11674, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38874829

ABSTRACT

This study addresses existing gaps in understanding the specific involvement of dissolved organic matter (DOM) fractions in antibiotic photolysis, particularly under natural conditions and during DOM photobleaching. Employing fluorescent, chemical, and molecular analysis techniques, it explores the impact of extracellular and intracellular organic matter (EOM and IOM) on the photodissipation of multiclass antibiotics, coupled with DOM photobleaching under natural solar radiation. Key findings underscore the selective photobleaching of DOM fractions, propelled by distinct chemical profiles, influencing DOM-mediated antibiotic photolysis. Notably, lipid-like substances dominate in the IOM, while lignin-like substances prevail in the EOM, each uniquely responding to sunlight and exhibiting selective photobleaching. Sunlight primarily targets fulvic acid-like lignin components in EOM, contrasting the initial changes observed in tryptophan-like lipid substances in IOM. The lower photolability of EOM, attributed to its rich unsaturated compounds, contributes to an enhanced rate of indirect antibiotic photolysis (0.339-1.402 h-1) through reactive intermediates. Conversely, the abundance of aliphatic compounds in IOM, despite it being highly photolabile, exhibits a lower mediation of antibiotic photolysis (0.067-1.111 h-1). The triplet state excited 3DOM* plays a pivotal role in the phototransformation and toxicity decrease of antibiotics, highlighting microbial EOM's essential role as a natural aquatic photosensitizer for water self-purification. These findings enhance our understanding of DOM dynamics in aquatic systems, particularly in mitigating antibiotic risks, and introduce innovative strategies in environmental management and water treatment technologies.


Subject(s)
Anti-Bacterial Agents , Photolysis , Anti-Bacterial Agents/chemistry
12.
J Antimicrob Chemother ; 79(7): 1606-1613, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38804142

ABSTRACT

BACKGROUND: The efficacy of current drugs against hookworms at a single dose is highly variable across regions, age groups and infection intensity. Extensive and repeated use of these drugs also leads to potential drug resistance. Therefore, novel drugs are required for sustained disease control. OBJECTIVES: Novel aromatic heterocycle substituted aminamidine derivatives (AADs) were synthesized based on tribendimine (TBD), and their in vivo potency against Necator americanus was tested. METHODS: The efficacy of the AADs was tested in male hamsters. Oral and IV pharmacokinetic parameters were determined in male Sprague-Dawley rats. The proteomic profiles of N. americanus samples treated with AADs were compared using tandem mass tag-based quantitative proteomic analyses. RESULTS: Most AADs exhibited better anthelmintic activity than TBD at a single oral dose. Compound 3c exhibited improved solubility (>50×), and the curative dose was as low as 25 mg/kg. Similar to TBD, 3c was rapidly metabolized after oral administration and transformed into p-(1-dimethylamino ethylimino)aniline (dADT), an active metabolite against intestinal nematodes. dADT from 3c had better pharmacokinetic profiles than that from TBD and achieved an oral bioavailability of 99.5%. Compound 3c possessed rapid anthelmintic activity, clearing all worms within 24 h after an oral dose of 50 mg/kg. Quantitative proteomic analysis indicated that it might be related to ATP metabolism and cuticle protein synthesis. CONCLUSIONS: Compound 3c is a novel and promising compound against N. americanus in vivo.


Subject(s)
Anthelmintics , Necator americanus , Rats, Sprague-Dawley , Animals , Male , Anthelmintics/pharmacology , Anthelmintics/pharmacokinetics , Necator americanus/drug effects , Amidines/pharmacology , Amidines/pharmacokinetics , Administration, Oral , Cricetinae , Rats , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/pharmacokinetics , Heterocyclic Compounds/chemistry , Proteomics
13.
Int J Biol Macromol ; 271(Pt 2): 132582, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38801849

ABSTRACT

Prolyl endopeptidase from Aspergillus niger (An-PEP) is an enzyme that recognizes C-terminal peptide bonds of amino acid chains and cleaves them by hydrolysis. An aqueous two-phase system (ATPS) was used to separate An-PEP from fermentation broth. Through single factor experiments, the ATPS containing 16 % (w/w) PEG2000 and 15 % (w/w) (NH4)2SO4 at pH 6.0 obtained the recovery of 79.74 ± 0.16 % and the purification coefficient of 7.64 ± 0.08. It was then used to produce soy protein isolate peptide (SPIP) by hydrolysis of soy protein isolate (SPI), and SPIP-Ferrous chelate (SPIP-Fe) was prepared with SPIP and Fe2+. The chelation conditions were optimized by RSM, as the chelation time was 30 min, chelation temperature was 25 °C, SPIP mass to VC mass was two to one and pH was 6.0. The obtained chelation rate was 82.56 ± 2.30 %. The change in the structures and functional features of SPIP before and after chelation were investigated. The FTIR and UV-Vis results indicated that the chelation of Fe2+ and SPIP depended mainly on the formation of amide bonds. The fluorescence, SEM and amino acid composition analysis results indicated that Fe2+ could induce and stabilize the surface conformation and change the amino acid distribution on the surfaces of SPIP. The chelation of SPIP and Fe2+ resulted in the enhancement of radical scavenging activities and ACE inhibitory activities. This work provided a new perspective for the further development of peptide-Fe chelates for iron supplement.


Subject(s)
Aspergillus niger , Prolyl Oligopeptidases , Aspergillus niger/enzymology , Prolyl Oligopeptidases/chemistry , Prolyl Oligopeptidases/metabolism , Hydrogen-Ion Concentration , Soybean Proteins/chemistry , Hydrolysis , Temperature , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Serine Endopeptidases/isolation & purification , Chelating Agents/chemistry , Chelating Agents/pharmacology , Fermentation , Iron/chemistry
14.
Faraday Discuss ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757528

ABSTRACT

In the form of direct abstraction of a surface adsorbate by a gaseous projectile, the Eley-Rideal (ER) reaction at the gas-surface interface manifests interesting dynamics. Unfortunately, high-dimensional quantum dynamical (QD) studies for ER reactions remain very challenging, which demands a large configuration space and the coordinate transformation of wavefunctions. Here, we report the first six-dimensional (6D) fully coupled quantum scattering method for studying the ER reaction between gas phase H(D) atoms and adsorbed D(H) atoms on a rigid Cu(111) surface. Reaction probabilities and product rovibrational state distributions obtained by this 6D model are found to be quite different from those obtained by reduced-dimensional QD models, demonstrating the high-dimensional nature of the ER reaction. Using two distinct potential energy surfaces (PESs), we further discuss the influence of the PES on the calculated product vibrational and rotational state distributions, in comparison with experimental results. The lateral corrugation and the exothermicity of the PES are found to play a critical role in controlling the energy disposal in the ER reaction.

15.
Sci Total Environ ; 932: 172929, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38703852

ABSTRACT

Firework (FW) events occur during various festivals worldwide and substantially negatively influence both air quality and human health. However, the effects of FWs on the chemical properties and formation of organic aerosols are far from clear. In this study, fine particulate matter (PM2.5) samples were collected in a suburban area in Qingdao, China during the Chinese Spring Festival. The concentrations of chemical species (especially carbonaceous components) in PM2.5 were measured using a combination of several state-of-the-art techniques. Our results showed that mass concentrations of water-soluble sulfate, potassium and chloride ions, and organic carbon drastically increased and became the predominant components in PM2.5 during FW events. Correspondingly, both the number and fractional contributions of sulfur (S)-containing subgroups (e.g., CHOS and CHONS compounds) and some chlorine (Cl)-containing organic (e.g., CHOSCl and CHONSCl) compounds identified using ultrahigh-resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) increased. The S- and Cl-containing compounds unique to the FW display period were identified, and their chemical characterization, sources, and formation mechanisms were elucidated by combining FT-ICR MS and quantum chemical calculations. Our results suggest that FW emissions play notable roles in both primary and secondary organic aerosol formation, especially for CHOS- and Cl-containing organic compounds.

16.
JVS Vasc Sci ; 5: 100202, 2024.
Article in English | MEDLINE | ID: mdl-38694477

ABSTRACT

Objective: Sympathetic innervation plays a pivotal role in regulating cardiovascular health, and its dysregulation is implicated in a wide spectrum of cardiovascular diseases. This study seeks to evaluate the impact of denervation of the abdominal aorta on its morphology and wall homeostasis. Methods: Male and female Sprague-Dawley rats (N = 12), aged 3 months, underwent midline laparotomy for infrarenal aorta exposure. Chemical denervation was induced via a one-time topical application of 10% phenol (n = 6), whereas sham controls received phosphate-buffered saline (n = 6). Animals were allowed to recover and subsequently were sacrificed after 6 months for analysis encompassing morphology, histology, and immunohistochemistry. Results: At 6 months post-treatment, abdominal aortas subjected to phenol denervation still exhibited a significant reduction in nerve fiber density compared with sham controls. Denervated aortas demonstrated reduced intima-media thickness, increased elastin fragmentation, decreased expression of vascular smooth muscle proteins (α-SMA and MYH11), and elevated adventitial vascular density. Sex-stratified analyses revealed additional dimorphic responses, particularly in aortic collagen and medial cellular density in female animals. Conclusions: Single-timepoint phenol-based chemical denervation induces alterations in abdominal aortic morphology and vascular remodeling over a 6-month period. These findings underscore the potential of the sympathetic nervous system as a therapeutic target for aortic pathologies. Clinical Relevance: Aortic remodeling remains an important consideration in the pathogenesis of aortic disease, including occlusive, aneurysmal, and dissection disease states. The paucity of medical therapies for the treatment of aortic disease has driven considerable interest in elucidating the pathogenesis of these conditions; new therapeutic targets are critically needed. Here, we show significant remodeling after phenol-induced denervation with morphologic, histologic, and immunohistochemical features. Future investigations should integrate sympathetic dysfunction as a potential driver of pathologic aortic wall changes with additional consideration of the sympathetic nervous system as a therapeutic target.

17.
Langenbecks Arch Surg ; 409(1): 146, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38691172

ABSTRACT

OBJECTIVE: In this paper, a single-hand-operated hepatic pedicle clamp was introduced, and its application value in laparoscopic liver tumor resection was preliminarily discussed. METHODS: The clinical data of 67 patients who underwent laparoscopic liver tumor resection at the First Affiliated Hospital of Wannan Medical College from March 2019 to October 2023 were retrospectively analyzed. The Pringle maneuver was performed with a hepatic pedicle clamp during the operation. The preoperative, intraoperative and postoperative clinical data were observed and recorded. RESULTS: Sixty-seven patients had a median block number, block time, intraoperative blood loss, and postoperative length of hospital stay of 4, 55 min, 400 ml, and 7 days, respectively. The average operation time was 304.9±118.4 min, the time required for each block was 3.2±2.4 s, and the time required for each removed block was 2.6±0.7 s. None of the patients developed portal vein thrombosis or hepatic artery aneurysm formation. CONCLUSION: The hepatic pedicle clamping clamp is simple to use in laparoscopic hepatectomy, optimizes the operation process, and has a reliable blocking effect. It is recommended for clinical application.


Subject(s)
Hepatectomy , Laparoscopy , Liver Neoplasms , Humans , Hepatectomy/methods , Male , Female , Middle Aged , Retrospective Studies , Liver Neoplasms/surgery , Laparoscopy/methods , Aged , Constriction , Adult , Operative Time , Length of Stay , Blood Loss, Surgical/prevention & control , Blood Loss, Surgical/statistics & numerical data , Treatment Outcome
18.
J Biomed Res ; : 1-13, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38807379

ABSTRACT

Macrophages mediated inflammatory response is crucial for the recovery of skeletal muscle following ischemia. Thus, it's necessary to exploit macrophages based therapeutic targets for ischemic disease. Here, we found mRNA level of SR-A1 was elevated in patients with critical limb ischemia by analysis of gene expression omnibus (GEO) database. Then we investigated the role and the underlined mechanisms of macrophage SR-A1 in a mouse HLI model. Compared with the SR-A1 fl/fl mice, the Lyz Cre/+/SR-A1 flox/flox (SR-A1 ΔMΦ) mice showed significantly lower laser doppler blood flow in the ischemic limb at day 7 after HLI. Consistently, histological analysis exhibited that ischemic limb of SR-A1 ΔMΦ mice displayed more sever and sustained necrotic morphology, inflammation and fibrosis, decreased vessel density and regeneration rate, compared with which of control SR-A1 fl/fl mice. Furthermore, restoration of wild-type myeloid cells to SR-A1 knock-out mice effectively relieved the doppler perfusion in the ischemic limb and restrained skeletal muscle damage 7 days post HLI. In line with in vivo findings, when co-cultivating macrophages with the mouse myoblast line C2C12, SR-A1 -/- bone marrow macrophage significantly inhibited myoblast differentiation in vitro. Mechanically, SR-A1 enhanced skeletal muscle regeneration response to HLI by inhibiting the oncostatin M (OSM) production via suppressed NF-κB signaling activation. These results indicates that SR-A1 is a promising candidate molecule to improve tissue repair and regeneration in peripheral ischemic arterial disease.

19.
BMC Geriatr ; 24(1): 466, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807058

ABSTRACT

BACKGROUND: With the aging population, the number of individuals with dementia in China is increasing rapidly. This community-based study aimed to investigate the prevalence and risk factors for dementia and mild cognitive impairment (MCI) among older adults in China. METHODS: In this study, 20,070 individuals aged ≥ 65 were recruited between January 1, 2022, and February 1, 2023, from ten communities in Xiamen City, China. We collected data on age, sex, level of education, and medical history, as well as global cognition and functional status. The prevalence of dementia and MCI was examined, and the risk factors for different groups were assessed. RESULTS: The overall prevalence of dementia and MCI was approximately 5.4% (95% confidence interval [CI], 5.1-5.7) and 7.7% (95% CI, 7.4-8.1), respectively. The results also indicated that dementia and MCI share similar risk factors, including older age, female sex, hypertension, and diabetes mellitus. Compared with individuals with no formal education, those with > 6 years of education had an odds ratio for MCI of 1.83 (95% CI, 1.49-2.25). We also found that only 5.5% of the positive participants chose to be referred to the hospital for further diagnosis and treatment during follow-up visits. CONCLUSIONS: This study estimated the prevalence and risk factors for dementia and MCI among individuals aged ≥ 65 years in Southeast China. These findings are crucial for preventing and managing dementia and MCI in China.


Subject(s)
Cognitive Dysfunction , Dementia , Humans , Male , Female , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/diagnosis , Aged , China/epidemiology , Dementia/epidemiology , Dementia/diagnosis , Prevalence , Risk Factors , Aged, 80 and over
20.
Cell Rep ; 43(5): 114238, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38748875

ABSTRACT

Triacylglyceride (TAG) synthesis in the small intestine determines the absorption of dietary fat, but the underlying mechanisms remain to be further studied. Here, we report that the RNA-binding protein HuR (ELAVL1) promotes TAG synthesis in the small intestine. HuR associates with the 3' UTR of Dgat2 mRNA and intron 1 of Mgat2 pre-mRNA. Association of HuR with Dgat2 3' UTR stabilizes Dgat2 mRNA, while association of HuR with intron 1 of Mgat2 pre-mRNA promotes the processing of Mgat2 pre-mRNA. Intestinal epithelium-specific HuR knockout reduces the expression of DGAT2 and MGAT2, thereby reducing the dietary fat absorption through TAG synthesis and mitigating high-fat-diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) and obesity. Our findings highlight a critical role of HuR in promoting dietary fat absorption.


Subject(s)
Diet, High-Fat , ELAV-Like Protein 1 , Intestinal Absorption , Triglycerides , Triglycerides/metabolism , Triglycerides/biosynthesis , Animals , ELAV-Like Protein 1/metabolism , ELAV-Like Protein 1/genetics , Mice , Diet, High-Fat/adverse effects , Humans , Mice, Inbred C57BL , Male , Diacylglycerol O-Acyltransferase/metabolism , Diacylglycerol O-Acyltransferase/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/genetics , Obesity/metabolism , Obesity/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Dietary Fats/metabolism , Dietary Fats/pharmacology , Mice, Knockout , 3' Untranslated Regions/genetics , Acyltransferases
SELECTION OF CITATIONS
SEARCH DETAIL
...