Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Type of study
Publication year range
1.
Bioorg Chem ; 151: 107656, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39047333

ABSTRACT

Fungi from the plant rhizosphere microbiome are considered an important source of bioactive novel natural compounds. In this study, three new sesquiterpenes, penisterpenoids A-C (1-3), and three new viridin derivatives, peniviridiols A-C (4-6), along with twenty one known compounds (7-27), were isolated from the rhizosphere fungus Penicillium sp. SMU0102 of medicinal plant Bupleurum chinense DC. Their structures were elucidated by extensive spectroscopic analysis. The absolute configurations of compounds 1-6 were determined by experimental and calculated ECD spectra, DP4 + probability analysis, modified Mosher's method, and X-ray crystallography. All new compounds were screened for their cytotoxic and lipid-lowering activities in vitro. Among them, compound 1 (20 µM) remarkably alleviated lipid accumulation both in FFA-induced LO2 cells and TAA-induced zebrafish NAFLD models. Furthermore, compound 1 enhanced ATP production and mitochondrial membrane potential (MMP), suppressed reactive oxygen species (ROS) formation, restored mitochondrial structure, and induced autophagosome formation. Moreover, compound 1 significantly upregulated the expression of representative proteins for the mitochondrial homeostasis, including OPA1, DRP1, MFF, and Fis1, as well as mitophagy representative proteins PINK1, Parkin, and P62. Further mechanistic investigations indicated that compound 1 primarily alleviated lipid accumulation through selective activation of the PINK1/Parkin mitophagy signaling pathway.

2.
Front Bioeng Biotechnol ; 12: 1329437, 2024.
Article in English | MEDLINE | ID: mdl-38572361

ABSTRACT

The relationships of lumbar proprioception with postural control have not been clarified in people with chronic low back pain. This study aimed to compare the associations between lumbar proprioception and postural control in response to calf vibration in individuals with and without chronic low back pain. In this study, we recruited twenty patients with chronic low back pain (CLBP group) and twenty healthy control subjects (HC group) aged between 18 and 50 years. This study was a cross-sectional study and completed from May 2022 to October 2022. The passive joint repositioning sense (PJRS) test for two positions (15° and 35°) were used to assess lumbar proprioception and expressed as the mean of reposition error (RE). Postural control was tested by adding and removing calf vibration while standing on a stable force plate with eyes closed. The sway velocity in the anterior-posterior (AP) direction of center of pressure (COP) data with a window of 15s epoch at baseline, during and after calf vibration was used to evaluate postural control. Mann-Whitney U-tests were used to compare the difference of lumbar proprioception between two groups, and the independent t-tests were used to compare the difference of postural control at baseline and during vibration, and a mixed design ANOVA was used to compare the difference of postural control during post-perturbation. In addition, to explore the association between postural control and lumbar proprioception and pain intensity, Spearman's correlations were used for each group. The major results are: (1) significantly higher PJRS on RE of 15° (CLBP: 95% CI [2.03, 3.70]; HC: 95% CI [1.03, 1.93]) and PJRS on RE of 35° (CLBP: 95% CI [2.59, 4.88]; HC: 95% CI [1.07, 3.00]) were found in the CLBP group; (2) AP velocity was not different between the CLBP group and the HC group at baseline and during calf vibration. However, AP velocity was significantly larger in the CLBP group compared with the HC group at epoch 2-14 after calf vibration, and AP velocity for the CLBP group took a longer time (23 epochs) to return to the baseline after calf vibration compared with the HC group (9 epochs); (3) lumbar proprioception represented by PJRS on RE of 15°correlated negatively with AP velocity during and after vibration for the HC group. Within the CLBP group, no significant relationships between PJRS on RE for two positions (15° and 35°) and AP velocity in any postural phases were found. In conclusion, the CLBP group has poorer lumbar proprioception, slower proprioceptive reweighting and impaired postural control after calf vibration compared to the HC group. Lumbar proprioception offers different information on the control strategy of standing control for individuals with and without CLBP in the situations with proprioceptive disturbance. These results highlight the significance of assessing lumbar proprioception and postural control in CLBP patients.

3.
Phytother Res ; 38(1): 59-73, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37795923

ABSTRACT

Pathological pain, a multifaceted and debilitating ailment originating from injury or post-injury inflammation of the somatosensory system, poses a global health challenge. Despite its ubiquity, reliable therapeutic strategies remain elusive. To solve this problem, resveratrol, a naturally occurring nonflavonoid polyphenol, has emerged as a potential beacon of hope owing to its anti-inflammatory, antioxidant, and immunomodulatory capabilities. These properties potentially position resveratrol as an efficacious candidate for the management of pathological pain. This concise review summaries current experimental and clinical findings to underscore the therapeutic potential of resveratrol in pathological pain, casting light on the complex underlying pathophysiology. Our exploration suggests that resveratrol may exert its analgesic effect by the modulating pivotal signaling pathways, including PI3K/Akt/mTOR, TNFR1/NF-κB, MAPKs, and Nrf2. Moreover, resveratrol appears to attenuate spinal microglia activation, regulate primary receptors in dorsal root sensory neurons, inhibit pertinent voltage-gated ion channels, and curb the expression of inflammatory mediators and oxidative stress responses. The objective of this review is to encapsulate the pharmacological activity of resveratrol, including its probable signaling pathways, pharmacokinetics, and toxicology pertinent to the treatment of pathological pain. Hopefully, we aim to map out promising trajectories for the development of resveratrol as a potential analgesic.


Subject(s)
Clinical Relevance , Stilbenes , Humans , Resveratrol/pharmacology , Phosphatidylinositol 3-Kinases , Pain/drug therapy , Analgesics/pharmacology , Analgesics/therapeutic use , Stilbenes/pharmacology
4.
Phytomedicine ; 108: 154491, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36368285

ABSTRACT

BACKGROUND: Non-small cell lung cancer (NSCLC) accounts for almost 85% of lung cancer-related deaths worldwide. Xihuang Pill (XHP) is a representative anticancer Chinese patented medicine used to treat NSCLC in China. However, to date, a systematic analysis of XHP's antitumour effects and its impact on the immune microenvironment has not been performed. PURPOSE: Based on the systems biology strategy and experimental validation, the present study aimed to investigate the pharmacological mechanisms involved in treating NSCLC with XHP. METHODS: A subcutaneous tumour model was established to evaluate XHP's tumour-inhibitory effect in BALB/c nude mice. RNA sequencing (RNA-seq) and bioinformatics analysis were conducted to identify differentially expressed genes (DEGs) and signalling pathways related to XHP treatment. Network analysis based on network pharmacology and protein-to-protein networks was applied to identify the compounds and genes targeted by XHP. External data from the TCGA-NSCLC cohort were used to verify the clinical significance of XHP-targeted genes in NSCLC. The expression of survival-related candidate genes after XHP treatment was verified via qPCR. The protein expression of calcium voltage-gated channel subunit alpha 1C (CACNA1C) in different NSCLC cell lines was analysed in the Human Protein Atlas database (HPA) and DepMap Portal. Using the Estimation of STromal and Immune cells in MAlignant Tumour tissues using Expression data (ESTIMATE) algorithm and the single-sample gene set enrichment analysis (ssGSEA) algorithm uncovered the role of CACNA1C in the NSCLC tumour microenvironment (TME). RESULTS: XHP (2 g/kg/d) significantly inhibited the growth of transplanted A549 tumours. RNA-seq identified a total of 529 DEGs (189 upregulated and 340 downregulated). In addition, 542 GO terms, 41 significant KEGG pathways, 9 upregulated hallmarks pathways, and 18 downregulated hallmark pathways were enriched. These GO terms and signalling pathways were closely related to cell proliferation, immunity, energy metabolism, and the inflammatory response of NSCLC. In addition, XHP's network pharmacology analysis identified 301 compounds and 1,432 target genes. A comprehensive strategic analysis identified CACNA1C as a promising gene by which XHP targets and regulates the TME of NSCLC, benefiting patient survival. CACNA1C expression was positively correlated with both the immune score and stromal score but negatively correlated with the tumour purity score. Additionally, CACNA1C expression was significantly correlated with the infiltration levels of 15 types of immune cells and the expression levels of 6 well-known checkpoint genes. CONCLUSIONS: Our results show that by regulating the pathways associated with cell proliferation and immunity, XHP can suppress cancer cell growth in NSCLC. Additionally, XHP may increase the expression of CACNA1C to suppress immune cell infiltration and regulate the expression of checkpoint-related genes, thereby improving the overall survival of NSCLC patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mice , Animals , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Systems Biology , Mice, Nude , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Tumor Microenvironment
5.
Front Microbiol ; 13: 1046099, 2022.
Article in English | MEDLINE | ID: mdl-36452922

ABSTRACT

Three new antibacterial spirooxindole alkaloids, spirobrefeldins A-C (1-3), together with four known analogs, spirotryprostatin M (4), spirotryprostatin G (5), 12ß-hydroxyverruculogen TR-2 (6), and 12α-hydroxyverruculogen TR-2 (7), were isolated from terrestrial fungus Penicillium brefeldianum. All the new compounds were elucidated extensively by the interpretation of their NMR (1D and 2D) spectra and high-resolution mass data, and their absolute configurations were determined by computational chemistry and CD spectra. The absolute configurations of spiro carbon C-2 in spirotryprostatin G (5) and spirotryprostatin C in literature were reported as S, which were revised to R based on experimental and calculated CD spectra. All the compounds were evaluated for their antimicrobial activities toward Pseudomonas aeruginosa PAO1, Dickeya zeae EC1, Staphylococcus epidermidis, Escherichia coli, and Sporisorium scitamineum. Compound 7 displayed moderate inhibitory activity toward dimorphic switch of pathogenic smut fungi Sporisorium scitamineum at 25 µM. Compounds 3 and 6 showed weak antibacterial activities against phytopathogenic bacterial Dickeya zeae EC1 at 100 µM.

6.
Front Pharmacol ; 13: 1023713, 2022.
Article in English | MEDLINE | ID: mdl-36479195

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a metabolic disease with persistent hyperglycemia primarily caused by insulin resistance (IR). The number of diabetic patients globally has been rising over the past decades. Although significant progress has been made in treating diabetes mellitus (DM), existing clinical drugs for diabetes can no longer fully meet patients when they face complex and huge clinical treatment needs. As a traditional and effective medical system, traditional Chinese medicine (TCM) has a unique understanding of diabetes treatment and has developed many classic and practical prescriptions targeting DM. With modern medicine and pharmacy advancements, researchers have discovered that various bioactive metabolites isolated from TCM show therapeutic on DM. Compared with existing clinical drugs, these bioactive metabolites demonstrate promising prospects for treating DM due to their excellent biocompatibility and fewer adverse reactions. Accordingly, these valuable metabolites have attracted the interest of researchers worldwide. Despite the abundance of research works and specialized-topic reviews published over the past years, there is a lack of updated and systematic reviews concerning this fast-growing field. Therefore, in this review, we summarized the bioactive metabolites derived from TCM with the potential treatment of T2DM by searching several authoritative databases such as PubMed, Web of Science, Wiley Online Library, and Springer Link. For the convenience of readers, the content is divided into four parts according to the structural characteristics of these valuable compounds (flavonoids, terpenoids, alkaloids, and others). Meanwhile, the detailed mechanism and future directions of these promising compounds curing DM are also summarized in the related sections. We hope this review inspires increasingly valuable and significant research focusing on potential bioactive metabolites from TCM to treat DM in the future.

7.
Front Pharmacol ; 13: 878776, 2022.
Article in English | MEDLINE | ID: mdl-35677438

ABSTRACT

Licochalcone A (LA), a useful and valuable flavonoid, is isolated from Glycyrrhiza uralensis Fisch. ex DC. and widely used clinically in traditional Chinese medicine. We systematically updated the latest information on the pharmacology of LA over the past decade from several authoritative internet databases, including Web of Science, Elsevier, Europe PMC, Wiley Online Library, and PubMed. A combination of keywords containing "Licochalcone A," "Flavonoid," and "Pharmacological Therapy" was used to help ensure a comprehensive review. Collected information demonstrates a wide range of pharmacological properties for LA, including anticancer, anti-inflammatory, antioxidant, antibacterial, anti-parasitic, bone protection, blood glucose and lipid regulation, neuroprotection, and skin protection. LA activity is mediated through several signaling pathways, such as PI3K/Akt/mTOR, P53, NF-κB, and P38. Caspase-3 apoptosis, MAPK inflammatory, and Nrf2 oxidative stress signaling pathways are also involved with multiple therapeutic targets, such as TNF-α, VEGF, Fas, FasL, PI3K, AKT, and caspases. Recent studies mainly focus on the anticancer properties of LA, which suggests that the pharmacology of other aspects of LA will need additional study. At the end of this review, current challenges and future research directions on LA are discussed. This review is divided into three parts based on the pharmacological effects of LA for the convenience of readers. We anticipate that this review will inspire further research.

8.
J Antibiot (Tokyo) ; 75(5): 301-303, 2022 05.
Article in English | MEDLINE | ID: mdl-35288677

ABSTRACT

A new cytotoxic pentacyclic alkaloid, citrinadin C (1), together with four known compounds (2-5), were isolated from deep-sea-derived fungus Penicillium citrinum. The structure of new compound 1 was elucidated by extensive 1D and 2D NMR and Mass spectroscopic data, and its absolute configuration was determined by CD spectrum. All the compounds were evaluated for their cytotoxic and antibacterial activities. Compound 1 showed cytotoxic activities against human liver cancer cell line MHCC97H, with IC50 value of 16.7 µM. Compound 4 displayed significant antibacterial activity against phytopathogen Xanthomonas campestris, with MIC value of 25 µM.


Subject(s)
Alkaloids , Antineoplastic Agents , Penicillium , Alkaloids/chemistry , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Fungi , Humans , Molecular Structure , Penicillium/chemistry
9.
Front Pharmacol ; 13: 1065243, 2022.
Article in English | MEDLINE | ID: mdl-36699064

ABSTRACT

Polycystic ovary syndrome (PCOS) is one of the most common endocrine diseases in women of reproductive age and features complex pathological symptoms and mechanisms. Existing medical treatments have, to some extent, alleviated the deterioration of PCOS. However, these strategies only temporarily control symptoms, with a few side effects and no preventive effect. Phytochemicals extracted from medicinal herbs and plants are vital for discovering novel drugs. In recent years, many kinds of research have proven that phytochemicals isolated from traditional Chinese medicine (TCM) and medicinal plants show significant potential in preventing, alleviating, and treating PCOS. Nevertheless, compared to the abundance of experimental literature and minimal specific-topic reviews related to PCOS, there is a lack of systematic reviews to summarize these advancements in this promising field. Under this background, we systematically document the progress of bioactive phytochemicals from TCM and medicinal plants in treating PCOS, including flavonoids, polyphenols, and alkaloids. According to the literature, these valuable phytochemicals demonstrated therapeutic effects on PCOS supported by in vivo and in vitro experiments, mainly depending on anti-inflammatory, antioxidation, improvement of hormone disorder and insulin resistance (IR), and alleviation of hyperinsulinemia. Based on the current progress, future research directions should emphasize 1) exploring bioactive phytochemicals that potentially mediate bone metabolism for the treatment of PCOS; 2) improving unsatisfactory bioavailability by using advanced drug delivery systems such as nanoparticles and antibody-conjugated drugs, as well as a chemical modification; 3) conducting in-depth research on the pathogenesis of PCOS to potentially impact the gut microbiota and its metabolites in the evolution of PCOS; 4) revealing the pharmacological effects of these bioactive phytochemicals on PCOS at the genetic level; and 5) exploring the hypothetical and unprecedented functions in regulating PCOS by serving as proteolysis-targeting chimeras and molecular glues compared with traditional small molecule drugs. In brief, this review aims to provide detailed mechanisms of these bioactive phytochemicals and hopefully practical and reliable insight into clinical applications concerning PCOS.

10.
Front Oncol ; 10: 598464, 2020.
Article in English | MEDLINE | ID: mdl-33614486

ABSTRACT

Circular RNAs (circRNAs) are stable covalently closed non-coding RNAs (ncRNAs). Many studies indicate that circRNAs are involved in the pathological and physiological processes of liver cancer. However, the functions of circRNAs in liver cancer immunity are less known. In this review, we summarized the functions of circRNAs in liver cancer, including proliferative, metastasis and apoptosis, liver cancer stemness, cell cycle, immune evasion, glycolysis, angiogenesis, drug resistance/sensitizer, and senescence. Immune escape is considered to be one of the hallmarks of cancer development, and circRNA participates in the immune escape of liver cancer cells by regulating natural killer (NK) cell function. CircRNAs may provide new ideas for immunotherapy in liver cancer.

SELECTION OF CITATIONS
SEARCH DETAIL