Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 184
Filter
1.
Eur J Pharmacol ; : 176806, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986830

ABSTRACT

Chronic kidney disease (CKD) is a clinical syndrome characterized by persistent renal function decline. Renal fibrosis is the main pathological process in CKD, but an effective treatment does not exist. Stratifin (SFN) is a highly-conserved, multi-function soluble acidic protein. Therefore, this study explored the effects of SFN on CKD. First, we found that SFN was highly expressed in patients with CKD, as well as in CKD animal and cell models. Next, we induced injury and fibrosis in human renal tubule epithelial cells, and SFN knockdown reversed these effects. Furthermore, SFN knockdown mitigated ureteral obstruction (UUO)-induced renal tubular dilatation and renal interstitial fibrosis in mice. Liquid chromatography-tandem mass spectrometry/mass spectrometry (LC-MS/MS), co-immunoprecipitation (Co-IP), and immunofluorescence co-localization assays demonstrated that SFN bound the non-muscle myosin-encoding gene, myosin heavy chain 9 (MYH9), in the cytoplasm of renal tubular epithelial cells. MYH9 knockdown also reduced Col-1 and α-SMA expression, which are fibrosis markers. Finally, silencing SFN decreased MYH9 expression, alleviating renal fibrosis. These results suggest that SFN promotes kidney fibrosis in CKD by interacting with MYH9. This study may provide potential strategies for the treatment of CKD.

2.
J Phys Chem Lett ; : 7327-7334, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985131

ABSTRACT

Methanesulfenic acid, CH3SOH, is a fleeting intermediate in the ·OH-initiated oxidation reactions of dimethyl sulfide (DMS) and dimethyl disulfide (DMDS) in the atmosphere. Herein, we report the characterization and photochemistry of CH3SOH in Ar- and N2-matrices at 10 K. The characterization of CH3SOH with matrix-isolation IR and UV-vis spectroscopy is supported by D and 13C isotope labeling experiments and quantum chemical calculations. In line with the observed absorption at 260 nm for CH3SOH, its photolysis at 254 nm leads to dissociation by yielding the novel water complex H2CS···H2O, which exhibits a five-membered ring structure with intermolecular S···HO and CH···O hydrogen bonding interactions. Upon further irradiation at 193 nm, the H2CS···H2O complex undergoes dehydrogenation to form CS···H2O, which can further convert to HC(O)SH under irradiation at 254 nm. When the photolysis of CH3SOH was performed in an O2-doped Ar-matrix, methanesulfonic acid (MSA, CH3SO3H) was obtained as the oxidation product.

3.
J Am Chem Soc ; 146(27): 18699-18705, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38943601

ABSTRACT

Carbonyl nitrenes are versatile intermediates that have been extensively characterized; however, their phosphorus analogues remain largely unknown. Herein, we report the observation of a rare example of carbonyl phosphinidene NH2C(O)P, which was generated through the photolytic (193 nm) dehydrogenation of phosphinecarboxamide (NH2C(O)PH2) in a solid N2-matrix at 12 K. The characterization of NH2C(O)P in the triplet ground state with matrix-isolation IR and ultraviolet-visible (UV-vis) spectroscopy is supported by comprehensive isotope labeling experiments (D and 15N) and quantum chemical calculations. Upon visible-light irradiation at 680 nm, NH2C(O)P inserts into dihydrogen by the reformation of NH2C(O)PH2 with concomitant isomerization to the more stable aminophosphaketene (NH2PCO). Additionally, the photoisomerization of NH2C(O)PH2 to NH2C(OH) = PH along with decomposition by yielding hydrogen-bonded complexes HNCO···PH3 and HPCO···NH3 has been observed in the matrix.

4.
bioRxiv ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38826355

ABSTRACT

An "induced PARP inhibitor (PARPi) sensitivity by epigenetic modulation" strategy is being evaluated in the clinic to sensitize homologous recombination (HR)-proficient tumors to PARPi treatments. To expand its clinical applications and identify more efficient combinations, we performed a drug screen by combining PARPi with 74 well-characterized epigenetic modulators that target five major classes of epigenetic enzymes. Both type I PRMT inhibitor and PRMT5 inhibitor exhibit high combination and clinical priority scores in our screen. PRMT inhibition significantly enhances PARPi treatment-induced DNA damage in HR-proficient ovarian and breast cancer cells. Mechanistically, PRMTs maintain the expression of genes associated with DNA damage repair and BRCAness and regulate intrinsic innate immune pathways in cancer cells. Analyzing large-scale genomic and functional profiles from TCGA and DepMap further confirms that PRMT1, PRMT4, and PRMT5 are potential therapeutic targets in oncology. Finally, PRMT1 and PRMT5 inhibition act synergistically to enhance PARPi sensitivity. Our studies provide a strong rationale for the clinical application of a combination of PRMT and PARP inhibitors in patients with HR-proficient ovarian or breast cancer.

5.
J Colloid Interface Sci ; 672: 446-454, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38850869

ABSTRACT

The design of pre-catalysts and the rational manipulation of corresponding electrochemical reconstruction are vitally important to construct the highly durable and active catalysts for seawater oxidation, but rather challenging. Herein, a novel core-shell catalyst of Co2(PS3)@Co2P (labeled as CoPS) by epitaxial growth of amorphous cobalt phosphide (Co2P) on crystalline cobalt phosphorous trichalcogenide (Co2(PS3)) is firstly designed as a pre-catalyst for alkaline seawater oxidation. Various characterization techniques are employed to demonstrate that the unique amorphous-crystalline nanowire structure (CoPS) achieves the rapid surface reconstruction into active CoOOH and diversiform oxyanions species (labeled as CoPS-R). Theoretical simulations uncover that the in situ derived oxyanions (PO42-, SO32- and SO42-) on the surface of CoOOH can tune the electron distribution of Co site, thereby optimizing the chemisorption of oxygen evolution reaction (OER) intermediates on CoOOH and reducing the energy barrier of determining step. Consequently, in an alkaline natural seawater solution, the reconstructed CoPS-R catalyst exhibits small overpotentials of 357 and 402 mV for OER at 200 and 500 mA cm-2, respectively, together with an impressive durability over 500 h at a large current density of 500 mA cm-2 benefiting from the strong repulsive effect of the derived PO42-, SO32- and SO42- oxyanions. This work offers a new insight for comprehending the relationship of structure-composition-activity and develops a new approach toward the construction of efficient and robust OER catalysts for seawater electrolysis.

6.
Biomed Pharmacother ; 175: 116704, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749181

ABSTRACT

Long non-coding RNAs (lncRNAs) are pivotal controllers of gene expression through epigenetic mechanisms, Methylation, a prominent area of study in epigenetics, significantly impacts cellular processes. Various RNA base methylations, including m6A, m5C, m1A, and 2'-O-methylation, profoundly influence lncRNA folding, interactions, and stability, thereby shaping their functionality. LncRNAs and methylation significantly contribute to tumor development, especially in lung cancer. Their roles encompass cell differentiation, proliferation, the generation of cancer stem cells, and modulation of immune responses. Recent studies have suggested that dysregulation of lncRNA methylation can contribute to lung cancer development. Furthermore, methylation modifications of lncRNAs hold potential for clinical application in lung cancer. Dysregulated lncRNA methylation can promote lung cancer progression and may offer insights into potential biomarker or therapeutic target. This review summarizes the current knowledge of lncRNA methylation in lung cancer and its implications for RNA epigenetics and pulmonary diseases.


Subject(s)
Epigenesis, Genetic , Lung Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Animals , Gene Expression Regulation, Neoplastic , Methylation , Lung Diseases/genetics , DNA Methylation/genetics
7.
Sleep Breath ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739211

ABSTRACT

OBJECTIVE: This investigation seeks to examine the association between serum vitamin D concentrations and the prevalence of sleep disorders, additionally elucidating the causal relationship via Mendelian Randomization (MR) analysis. MATERIALS AND METHODS: This research employed data from the National Health and Nutrition Examination Survey (NHANES) 2011-2016, focusing on adults aged 20-50 years reporting sleep disorders. The research encompassed 4913 American adults. Weighted multivariable logistic regression models and cubic spline analyses were utilized to evaluate the association between serum vitamin D concentrations and the incidence of sleep disorders. Additionally, a two-sample Mendelian Randomization analysis was performed to evaluate the potential causal link between serum vitamin D concentrations and the risk of sleep disorders. RESULTS: Within the 2011-2016 NHANES cohort of the U.S. population, a notable inverse association was detected between serum vitamin D concentrations and sleep disorders (ß = - 3.81, 95% CI: - 6.10 to - 1.52, p = 0.003). After multivariate adjustments, a higher incidence of sleep disorders was associated with lower vitamin D Concentrations (OR 1.52, 95% CI 1.10-2.10, trend p = 0.014). Restricted cubic spline regression analysis indicated a linear association between serum vitamin D concentrations and sleep disorders(non-linearity p > 0.05). Lastly, the two-sample MR analysis yielded evidence supporting a potential causal connection between serum vitamin D concentrations and sleep disorders, with each unit increase in genetically predicted serum vitamin D reducing the odds ratio to 0.78 (95% CI 0.61-0.99, p = 0.044). CONCLUSIONS: These results imply that lower vitamin D concentrations in the population might correlate with a heightened risk of sleep disorders, suggesting the importance of considering vitamin D supplementation when treating sleep disorders.

8.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1102-1112, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621917

ABSTRACT

This study systematically combed the randomized controlled trial(RCT) of Chinese patent medicines in treatment of type 2 diabetes mellitus(T2DM) in recent five years by using the method of evidence map. It understood the distribution and quality of evidence in this field and found the existing Chinese patent medicines in treatment of T2DM and the problems in its research. The study collected the commonly used Chinese patent medicines for the treatment of T2DM from three drug catalogs, retrieved Chinese and English databases to obtain RCT literature related to Chinese patent medicines in recent five years, and extracted information such as sample size, study drug, combination medication, course of treatment, and outcome indicators from the literature. It also conducted quality evaluation based on the Cochrane collaborative network bias risk assessment tool and used charts to display the analysis results. A total of 19 kinds of Chinese patent medicines are collected, of which 13 kinds of Chinese patent medicines are mentioned in 131 articles related to RCT. The literature concerning Shenqi Jiangtang Capsules/Granules, Jinlida Granules, and Xiaoke Pills accounts for a large proportion. Outcome indicators include blood glucose, blood lipids, pancreatic islet cell function, and clinical symptoms. In terms of literature quality, 75 articles have correct random methods, and 1 article performs allocation hiding and blind methods. Therefore, the clinical orientation of Chinese patent medicines for the treatment of T2DM is broad, failing to reflect their own characteristics and lacking safety information. Insufficient attention has been paid to TCM syndrome scores, quality of life, and blood lipid outcome indicators that reflect the characteristics of traditional Chinese medicine(TCM). The number of studies on the treatment of T2DM by Chinese patent medicines varies greatly among varieties, and the quality of the studies is low. It is suggested that the holders of the marketing license of T2DM Chinese patent medicines should carry out a post-marketing re-evaluation of the varieties of traditional Chinese patent medicines for treating T2DM according to the relevant requirements of the State Food and Drug Administration, standardize the clinical positioning, and revise and improve the safety information in the instructions. It is recommended that researchers construct a core indicator dataset for Chinese patent medicine treatment of T2DM, improve the efficacy evaluation system, and develop an experimental plan based on CONSORT before conducting RCT.


Subject(s)
Diabetes Mellitus, Type 2 , Drugs, Chinese Herbal , Humans , Diabetes Mellitus, Type 2/drug therapy , Drugs, Chinese Herbal/adverse effects , Medicine, Chinese Traditional , Nonprescription Drugs/therapeutic use , Quality of Life , Randomized Controlled Trials as Topic
9.
J Invest Dermatol ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38580106

ABSTRACT

Systemic sclerosis (SSc) is a challenging autoimmune disease characterized by progressive fibrosis affecting the skin and internal organs. Despite the known infiltration of macrophages and neutrophils, their precise contributions to SSc pathogenesis remain elusive. In this study, we elucidated that CD206hiMHCIIlo M2-like macrophages constitute the predominant pathogenic immune cell population in the fibrotic skin of a bleomycin-induced SSc mouse model. These cells emerged as pivotal contributors to the profibrotic response by orchestrating the production of TGF-ß1 through a MerTK signaling-dependent manner. Notably, we observed that neutrophil infiltration was a prerequisite for accumulation of M2-like macrophages. Strategies such as neutrophil depletion or inhibition of CXCR1/2 were proven effective in reducing M2-like macrophages, subsequently mitigating SSc progression. Detailed investigations revealed that in fibrotic skin, neutrophil-released neutrophil extracellular traps were responsible for the differentiation of M2-like macrophages. Our findings illuminate the significant involvement of the neutrophil-macrophage-fibrosis axis in SSc pathogenesis, offering critical information for the development of potential therapeutic strategies.

10.
Phys Chem Chem Phys ; 26(12): 9295-9308, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38469695

ABSTRACT

Understanding selectivity mechanisms of inhibitors towards highly homologous proteins is of paramount importance in the design of selective candidates. Human aldo-keto reductases (AKRs) pertain to a superfamily of monomeric oxidoreductases, which serve as NADPH-dependent cytosolic enzymes to catalyze the reduction of carbonyl groups to primary and secondary alcohols using electrons from NADPH. Among AKRs, AKR1B1 is emerging as a promising target for cancer treatment and diabetes, despite its high structural similarity with AKR1B10, which leads to severe adverse events. Therefore, it is crucial to understand the selectivity mechanisms of AKR1B1 and AKR1B10 to discover safe anticancer candidates with optimal therapeutic efficacy. In this study, multiple computational strategies, including sequence alignment, structural comparison, Protein Contacts Atlas analysis, molecular docking, molecular dynamics simulation, MM-GBSA calculation, alanine scanning mutagenesis and pharmacophore modeling analysis were employed to comprehensively understand the selectivity mechanisms of AKR1B1/10 inhibition based on selective inhibitor lidorestat and HAHE. This study would provide substantial evidence in the design of potent and highly selective AKR1B1/10 inhibitors in future.


Subject(s)
Enzyme Inhibitors , Molecular Dynamics Simulation , Humans , Molecular Docking Simulation , NADP/metabolism , Aldo-Keto Reductases/metabolism , Enzyme Inhibitors/pharmacology , Aldehyde Reductase/metabolism
11.
Front Public Health ; 12: 1360824, 2024.
Article in English | MEDLINE | ID: mdl-38550325

ABSTRACT

Background: Home-based exercise (HBE) represents an alternative to increase the accessibility of rehabilitation programs and relieve the burden on the health care system for people with knee osteoarthritis. Objectives: To summarize for the first time the effectiveness of HBE as compared to center-based exercise (CBE), both with and without HBE, on patient-reported and performance-based outcomes in people with KOA. Methods: Searches were conducted on PubMed, Cochrane, Embase, Web of Science, and Scopus until March 10, 2023, without date or language restrictions. Randomized controlled trials investigating HBE versus CBE or HBE combined with CBE for people with KOA were eligible. The primary outcomes were patient-reported: pain, physical disability, and quality of life. The secondary outcomes were performance-based: walking ability, lower limb muscle strength, and balance function. Risk of bias was assessed with the Cochrane Risk of Bias tool and quality of evidence according to the GRADE. Results: Eleven trials involving 956 participants were included. There was no difference in short-term pain (SMD, 0.22 [95% CI, -0.04 to 0.47], p = 0.09; I2 = 0%), physical disability (SMD, 0.17 [95% CI, -0.19 to 0.54], p = 0.35; I2 = 0%), walking ability (SMD, -0.21 [95% CI, -0.64 to 0.22], p = 0.33; I2 = 35%) and lower limb muscle strength (SMD, -0.24 [95% CI, -0.88 to 0.41], p = 0.47; I2 = 69%) between HBE and CBE. HBE combined with CBE has better benefits compared with HBE alone in short-term pain (SMD, 0.89 [95% CI, 0.60 to 1.17], p < 0.001; I2 = 11%) and physical disability (SMD, 0.25 [95% CI, 0.00 to 0.50], p = 0.05; I2 = 0%). Conclusion: Based on limited evidence, HBE is as effective as CBE on short-term pain, physical disability, walking ability, and lower limb muscle strength in people with knee osteoarthritis. Furthermore, combining HBE with CBE may enhance the overall efficacy of the intervention. Systematic review registration: PROSPERO, CRD42023416548.


Subject(s)
Osteoarthritis, Knee , Quality of Life , Humans , Osteoarthritis, Knee/rehabilitation , Exercise , Pain , Patient Reported Outcome Measures
12.
Chemistry ; 30(27): e202400490, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38421349

ABSTRACT

The diatomic molecule PH is very reactive, and it serves as the parent compound for phosphinidenes featuring a monovalent phosphorus atom. Herein, we report the characterization and reactivity of a rare hydrogen-bonded complex of PH. Specifically, the molecular complex between PH and HCl has been generated by photolysis of chlorophosphine (H2PCl) at 254 nm in a solid Ar-matrix at 10 K. The IR spectrum of the complex HP⋅⋅⋅HCl and quantum chemical calculations at the UCCSD(T)-F12a/haTZ level consistently prove that the phosphorus atom acts as a hydrogen bond acceptor with a binding energy (D0) of -0.6 kcal mol-1. In line with the observed absorption at 341 nm for the binary complex, the triplet phosphinidene PH undergoes prototype H-Cl bond insertion by reformation of H2PCl upon photoexcitation at 365 nm. However, this hydrogen-bonded complex is unstable in the presence of N2 and HCl, as both molecules prefers stronger interactions with HCl than PH in the observed complexes HP⋅⋅⋅HCl⋅⋅⋅N2 and HP⋅⋅⋅2HCl.

13.
Adv Mater ; 36(18): e2311429, 2024 May.
Article in English | MEDLINE | ID: mdl-38298173

ABSTRACT

Relieving inflammation via scavenging toxic reactive oxygen species (ROS) during the acute phase of spinal cord injury (SCI) proves to be an effective strategy to mitigate secondary spinal cord injury and improve recovery of motor function. However, commonly used corticosteroid anti-inflammatory drugs show adverse side effects which may induce increased risk of wound infection. Fortunately, hydrogen (H2), featuring selective antioxidant performance, easy penetrability, and excellent biosafety, is being extensively investigated as a potential anti-inflammatory therapeutic gas for the treatment of SCI. In this work, by a facile in situ growth approach of gold nanoparticles (AuNPs) on the piezoelectric BaTiO3, a particulate nanocomposite with Schottky heterojunction (Au@BT) is synthesized, which can generate H2 continuously by catalyzing H+ reduction through piezoelectric catalysis. Further, theoretical calculations are employed to reveal the piezoelectric catalytic mechanism of Au@BT. Transcriptomics analysis and nontargeted large-scale metabolomic analysis reveal the deeper mechanism of the neuroprotective effect of H2 therapy. The as-prepared Au@BT nanoparticle is first explored as a flexible hydrogen gas generator for efficient SCI therapy. This study highlights a promising prospect of nanocatalytic medicine for disease treatments by catalyzing H2 generation; thus, offering a significant alternative to conventional approaches against refractory spinal cord injury.


Subject(s)
Gold , Hydrogen , Metal Nanoparticles , Spinal Cord Injuries , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/therapy , Spinal Cord Injuries/metabolism , Hydrogen/chemistry , Catalysis , Animals , Gold/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Titanium/chemistry , Mice , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Nanocomposites/chemistry
14.
Medicine (Baltimore) ; 103(6): e36968, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38335377

ABSTRACT

We intend to explore potential mechanisms of Tripterygium wilfordii Hook.f (TwHF) induced kidney injury (KI) using the methods of network toxicology and molecular docking. We determined TwHF potential compounds with its targets and KI targets, obtained the TwHF induced KI targets after intersecting targets of TwHF and KI. Then we conducted protein-protein interaction (PPI) network, gene expression analysis, gene ontology (GO) function and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis to explore the mechanism of TwHF-induced KI. Finally we conducted molecular docking to verify the core toxic compounds and the targets. We obtained 12 TwHF toxic compounds and 62 TwHF-induced KI targets. PPI network, gene expression analysis and GO function enrichment analysis unveiled the key biological process and suggested the mechanism of TwHF-induced KI might be associated with inflammation, immune response, hypoxia as well as oxidative stress. KEGG pathway enrichment analysis indicated PI3K-Akt signaling pathway, HIF-1 signaling pathway and TNF signaling pathway were key signaling pathways of TwHF induced KI. Molecular docking showed that the binding energy of core targets and toxic compounds was all less than -6.5 kcal/mol that verified the screening ability of network pharmacology and provided evidence for modifying TwHF toxic compounds structure. Through the study, we unveiled the mechanism of TwHF induce KI that TwHF might activate PI3K-Akt signaling pathway as well as TNF signaling pathway to progress renal inflammation, mediate hypoxia via HIF-1 signaling pathway to accelerate inflammatory processes, and also provided a theoretical basis for modifying TwHF toxic compounds structure as well as supported the follow-up research.


Subject(s)
Drugs, Chinese Herbal , Phosphatidylinositol 3-Kinases , Humans , Hypoxia , Hypoxia-Inducible Factor 1 , Inflammation , Kidney , Molecular Docking Simulation , Proto-Oncogene Proteins c-akt , Signal Transduction , Tripterygium , Tumor Necrosis Factor-alpha/metabolism
15.
Chemosphere ; 352: 141380, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38368958

ABSTRACT

Polybrominated diphenyl ethers (PBDEs) have been detected in various environmental media and human tissues. PBDEs concentrations in dust from college buildings and homes and in paired hair and urine samples from students were determined. This is of great significance to explore the accumulation and excretion patterns of PBDEs in the human body. The median PBDEs concentrations in the dust (College: 84.59 ng/g; Home: 170.32 ng/g) and hair (undergraduate: 6.16 ng/g; Home: 3.25 ng/g) samples were generally lower than were found in the majority of previous studies. The PBDEs concentrations in the hair and urine samples were subjected to principal component analysis, and the results combined with the PBDEs detection rates confirmed that hair is a useful non-invasive sampling medium for assessing PBDEs exposure and the risks posed. Body mass indices (BMIs) were used to divide students who had not been exposed to large amounts of PBDEs into groups. Body fat percentage is an important factor affecting the accumulation of PBDE in the human body. Environmental factors were found to affect the PBDEs concentrations in the hair and urine samples less for normal-weight students (BMI≤24) than overweight students (BMI>24). Short-term environmental changes to more readily affect the PBDEs concentrations in the tissues of the normal-weight than overweight students. PBDEs with seven or more bromine substituents were found not to be readily excreted in urine. Performing molecular docking simulations of the binding of isomers BDE-99 and BDE-100 to megalin. The binding energy was higher for BDE-100 and megalin than for BDE-99 and megalin, meaning BDE-99 would be more readily excreted than BDE-100.


Subject(s)
Environmental Monitoring , Halogenated Diphenyl Ethers , Polybrominated Biphenyls , Humans , Environmental Monitoring/methods , Halogenated Diphenyl Ethers/analysis , Low Density Lipoprotein Receptor-Related Protein-2/analysis , Dust/analysis , Molecular Docking Simulation , Overweight , Hair/chemistry , Environmental Exposure/analysis
16.
Opt Lett ; 49(3): 622-625, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38300074

ABSTRACT

Characterization of single-frequency lasers (SFLs) requires a precise measurement of their phase noise. However, there exists a contradiction between the frequency range and laser phase noise measurement sensitivity in the delay self-heterodyne method. Achieving a broadband and highly sensitive phase noise measurement often requires overlapping the results obtained from different delay lengths. In this study, we present a precisely designed short-fiber recirculating delayed self-heterodyne (SF-RDSH) method that enables the broadband and highly sensitive laser phase noise measurement in a compact setup. By designing the length of the delay fiber based on a theoretical model, the RDSH technique with a shortest delay length of 200 m enables a highly sensitive laser phase noise measurement from 1 Hz to 1 MHz for the first time, to our knowledge. In the experiment, we demonstrate the broadband phase noise measurement of an SFL by analyzing the 1st and 10th beat notes.

17.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38343328

ABSTRACT

Despite a standardized diagnostic examination, cancer of unknown primary (CUP) is a rare metastatic malignancy with an unidentified tissue of origin (TOO). Patients diagnosed with CUP are typically treated with empiric chemotherapy, although their prognosis is worse than those with metastatic cancer of a known origin. TOO identification of CUP has been employed in precision medicine, and subsequent site-specific therapy is clinically helpful. For example, molecular profiling, including genomic profiling, gene expression profiling, epigenetics and proteins, has facilitated TOO identification. Moreover, machine learning has improved identification accuracy, and non-invasive methods, such as liquid biopsy and image omics, are gaining momentum. However, the heterogeneity in prediction accuracy, sample requirements and technical fundamentals among the various techniques is noteworthy. Accordingly, we systematically reviewed the development and limitations of novel TOO identification methods, compared their pros and cons and assessed their potential clinical usefulness. Our study may help patients shift from empirical to customized care and improve their prognoses.


Subject(s)
Neoplasms, Unknown Primary , Humans , Neoplasms, Unknown Primary/diagnosis , Neoplasms, Unknown Primary/genetics , Neoplasms, Unknown Primary/therapy , Precision Medicine , Gene Expression Profiling/methods , Microarray Analysis
18.
Cancer Biomark ; 39(4): 349-360, 2024.
Article in English | MEDLINE | ID: mdl-38250761

ABSTRACT

GPX4 has attracted much attention as a key molecule of cell ferroptosis, but its role in cell apoptosis is rarely reported, and its role in apoptosis of thyroid cancer (TC) cell has not been reported. The analysis of TCGA database showed that both GPX4 and FKBP8 were highly expressed in TC tumor tissues; The expression of GPX4 and FKBP8 were positively correlated. The immunohistochemical analysis further confirmed that GPX4 and FKBP8 were highly expressed in TC tumor tissues. In addition, the high expression of GPX4 and FKBP8 were both significantly correlated with the poor prognosis of TC. Silencing GPX4 significantly inhibited the proliferation, induced apoptosis of TC cells, and reduced tumor growth in mice. The co-immunoprecipitation assay revealed a physical interaction between GPX4 and FKBP8 observed in the TC cells. Knockdown of FKBP8 significantly inhibited the proliferation and induced apoptosis of TC cells. Rescue experiments suggested that knockdown of FKBP8 could reverse the strengthens of cell proliferation and apoptosis and the higher expression of FKBP8 and Bcl-2 caused by overexpression of GPX4. Our results suggest that the GPX4/FKBP8/Bcl-2 axis promotes TC development by inhibiting TC cell apoptosis, which provides potential molecular targets for TC therapeutic strategies.


Subject(s)
Apoptosis , Cell Proliferation , Phospholipid Hydroperoxide Glutathione Peroxidase , Proto-Oncogene Proteins c-bcl-2 , Tacrolimus Binding Proteins , Thyroid Neoplasms , Humans , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/genetics , Tacrolimus Binding Proteins/metabolism , Tacrolimus Binding Proteins/genetics , Mice , Animals , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Cell Line, Tumor , Female , Male , Gene Expression Regulation, Neoplastic , Prognosis , Signal Transduction
19.
Materials (Basel) ; 17(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276415

ABSTRACT

In the realm of engineering rotary excavation, the rigid and brittle nature of the Polycrystal Diamond Compact (PDC) layer poses challenges to the impact resistance of conical teeth. This hinders their widespread adoption and utilization. In this paper, the Abaqus simulation is used. By optimizing the parameters of the radius of the cone top arc, we analyzed the changing law of the parameters of large-diameter D30 series conical PDC teeth, such as the equivalent force, impact force, and energy absorption of the conical teeth during the impact process, and optimized the best structure of the conical PDC teeth. After being subjected to a high temperature and high pressure, we synthesized the specimen for impact testing and analyzed the PDC layer crack extension and fracture failure. The findings reveal the emergence of a stress ring below the compacted area of the conical tooth. As the radius of the cone top arc increases, so does the area of the stress ring. When R ≥ 10 mm, the maximum stress change is minimal, and at R = 10 mm, the stress change in its top unit is relatively smooth. Optimal impact resistance is achieved, withstanding a total impact work value of 7500 J. Extrusion cracks appear in the combined layer part of PDC layers I and II, but the crack source is easy to produce in the combined layer of PDC layer II and the alloy matrix and extends to both sides, and the right side extends to the surface of the conical tooth in a "dragon-claw". The failure morphology of the conical teeth includes ring shedding at the top of the PDC layer, the lateral spalling of the PDC layer, and the overall cracking of the conical teeth. Through this study, we aim to promote the popularization and application of large-diameter conical PDC teeth in the field of engineering rotary excavation.

20.
Elife ; 132024 Jan 04.
Article in English | MEDLINE | ID: mdl-38174734

ABSTRACT

Recent advances in connectomics and neurophysiology make it possible to probe whole-brain mechanisms of cognition and behavior. We developed a large-scale model of the multiregional mouse brain for a cardinal cognitive function called working memory, the brain's ability to internally hold and process information without sensory input. The model is built on mesoscopic connectome data for interareal cortical connections and endowed with a macroscopic gradient of measured parvalbumin-expressing interneuron density. We found that working memory coding is distributed yet exhibits modularity; the spatial pattern of mnemonic representation is determined by long-range cell type-specific targeting and density of cell classes. Cell type-specific graph measures predict the activity patterns and a core subnetwork for memory maintenance. The model shows numerous attractor states, which are self-sustained internal states (each engaging a distinct subset of areas). This work provides a framework to interpret large-scale recordings of brain activity during cognition, while highlighting the need for cell type-specific connectomics.


Subject(s)
Connectome , Memory, Short-Term , Animals , Mice , Memory, Short-Term/physiology , Brain/physiology , Cognition/physiology , Magnetic Resonance Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...