Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5884, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003270

ABSTRACT

The early phases of clathrin mediated endocytosis are organized through a highly complex interaction network mediated by clathrin associated sorting proteins (CLASPs) that comprise long intrinsically disordered regions (IDRs). AP180 is a CLASP exclusively expressed in neurons and comprises a long IDR of around 600 residues, whose function remains partially elusive. Using NMR spectroscopy, we discovered an extended and strong interaction site within AP180 with the major adaptor protein AP2, and describe its binding dynamics at atomic resolution. We find that the 70 residue-long site determines the overall interaction between AP180 and AP2 in a dynamic equilibrium between its bound and unbound states, while weaker binding sites contribute to the overall affinity at much higher concentrations of AP2. Our data suggest that this particular interaction site might play a central role in recruitment of adaptors to the clathrin coated pit, whereas more transient and promiscuous interactions allow reshaping of the interaction network until cargo uptake inside a coated vesicle.


Subject(s)
Adaptor Protein Complex 2 , Clathrin , Endocytosis , Monomeric Clathrin Assembly Proteins , Protein Binding , Adaptor Protein Complex 2/metabolism , Clathrin/metabolism , Binding Sites , Monomeric Clathrin Assembly Proteins/metabolism , Monomeric Clathrin Assembly Proteins/genetics , Humans , Animals , Magnetic Resonance Spectroscopy , Clathrin-Coated Vesicles/metabolism , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics
2.
Protein Sci ; 32(11): e4798, 2023 11.
Article in English | MEDLINE | ID: mdl-37784242

ABSTRACT

Using unnatural amino acid mutagenesis, we made a mutant of CaMKII that forms a covalent linkage to Calmodulin upon illumination by UV light. Like wild-type CaMKII, the L308BzF mutant stoichiometrically binds to Calmodulin, in a calcium-dependent manner. Using this construct, we demonstrate that Calmodulin binding to CaMKII, even under these stochiometric conditions, does not perturb the CaMKII oligomeric state. Furthermore, we were able to achieve activation of CaMKII L308BzF by UV-induced binding of Calmodulin, which, once established, is further insensitive to calcium depletion. In addition to the canonical auto-inhibitory role of the regulatory segment, inter-subunit crosslinking in the absence of CaM indicates that kinase domains and regulatory segments are substantially mobile in basal conditions. Characterization of CaMKIIL308BzF in vitro, and its expression in mammalian cells, suggests it could be a promising candidate for control of CaMKII activity in mammalian cells with light.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Calmodulin , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/chemistry , Calmodulin/chemistry , Amino Acids/metabolism , Calcium/metabolism , Protein Binding , Phosphorylation , Mammals
3.
Elife ; 122023 08 11.
Article in English | MEDLINE | ID: mdl-37566455

ABSTRACT

The dodecameric protein kinase CaMKII is expressed throughout the body. The alpha isoform is responsible for synaptic plasticity and participates in memory through its phosphorylation of synaptic proteins. Its elaborate subunit organization and propensity for autophosphorylation allow it to preserve neuronal plasticity across space and time. The prevailing hypothesis for the spread of CaMKII activity, involving shuffling of subunits between activated and naive holoenzymes, is broadly termed subunit exchange. In contrast to the expectations of previous work, we found little evidence for subunit exchange upon activation, and no effect of restraining subunits to their parent holoenzymes. Rather, mass photometry, crosslinking mass spectrometry, single molecule TIRF microscopy and biochemical assays identify inter-holoenzyme phosphorylation (IHP) as the mechanism for spreading phosphorylation. The transient, activity-dependent formation of groups of holoenzymes is well suited to the speed of neuronal activity. Our results place fundamental limits on the activation mechanism of this kinase.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Neuronal Plasticity , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Phosphorylation , Signal Transduction , Holoenzymes/metabolism
4.
Angew Chem Int Ed Engl ; 61(12): e202113937, 2022 03 14.
Article in English | MEDLINE | ID: mdl-34927332

ABSTRACT

Cross-linking mass spectrometry (XL-MS) is an attractive method for the proteome-wide characterization of protein structures and interactions. Currently, the depth of in vivo XL-MS studies is lagging behind the established applications to cell lysates, because cross-linking reagents that can penetrate intact cells and strategies to enrich cross-linked peptides lack efficiency. To tackle these limitations, we have developed a phosphonate-containing cross-linker, tBu-PhoX, that efficiently permeates various biological membranes and can be robustly enriched using routine immobilized metal ion affinity chromatography. We have established a tBu-PhoX-based in vivo XL-MS approach that enables cross-links in intact human cells to be identified in high numbers with substantially reduced analysis time. Collectively, the developed cross-linker and XL-MS approach pave the way for the comprehensive XL-MS characterization of living systems.


Subject(s)
Proteome , Chromatography, Affinity , Cross-Linking Reagents/chemistry , Humans , Imidazoles , Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL